SOME NEW OPIAL-TYPE INEQUALITIES ON FRACTIONAL CALCULUS OPERATORS

被引:0
作者
Samraiz, Muhammad [1 ]
Iqbal, Sajid [2 ]
Ullah, Zaka [1 ]
Naheed, Saima [1 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Management & Technol, Dept Math, Sialkot Campus Sialkot, Punjab 51310, Pakistan
关键词
Opial-type inequalities; fractional integral; fractional derivative; Hilfer fractional derivative; HIGHER-ORDER DERIVATIVES; KERNELS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we establish some new Opial-type inequalities on fractional calculus involving the generalized Riemann-Liouville fractional integral, the Riemann-Liouville k-fractional integral, the (k, r)-fractional integral of the Riemann-type and the k-Hilfer fractional derivative operator.
引用
收藏
页码:29 / 47
页数:19
相关论文
共 24 条
[1]  
Agarwal R.P., 1995, Opial inequalities with applications in differential and difference equations
[2]   SHARP OPIAL-TYPE INEQUALITIES INVOLVING HIGHER-ORDER DERIVATIVES OF 2 FUNCTIONS [J].
AGARWAL, RP ;
PANG, PYH .
MATHEMATISCHE NACHRICHTEN, 1995, 174 :5-20
[3]   An Opial-type inequality involving higher-order derivatives of two functions [J].
Alzer, H .
APPLIED MATHEMATICS LETTERS, 1997, 10 (04) :123-128
[4]  
Andric M., 2015, FRACT DIFFER CALC, V5, P25, DOI [https://doi.org/10.7153/fdc-05-03, DOI 10.7153/FDC-05-03]
[5]   Opial-type inequality due to Agarwal-Pang and fractional differential inequalities [J].
Andric, Maja ;
Barbir, Ana ;
Farid, Ghulam ;
Pecaric, Josip .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (04) :324-335
[6]  
[Anonymous], 2007, Table of integrals, series, and products
[7]  
Diaz R., 2007, Divulgaciones Matematicas, V15, P179, DOI DOI 10.48550/ARXIV.MATH/0405596
[8]  
Hilfer R., 2000, APPL FRACTIONAL CALC
[9]   MULTIPLE OPIAL-TYPE INEQUALITIES FOR GENERAL KERNELS WITH APPLICATIONS [J].
Iqbal, Sajid ;
Pecaric, Josip ;
Samraiz, Muhammad .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02) :381-396
[10]   OPIAL-TYPE INEQUALITIES FOR TWO FUNCTIONS WITH GENERAL KERNELS AND APPLICATIONS [J].
Iqbal, Sajid ;
Pecaric, Josip ;
Samraiz, Muhammad .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04) :757-775