Identifying Protein-Protein Interaction Sites Using Covering Algorithm

被引:0
作者
Du, Xiuquan [1 ]
Cheng, Jiaxing [1 ]
Song, Jie [1 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei, Anhui, Peoples R China
来源
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES | 2009年 / 10卷 / 05期
关键词
protein-protein interaction; covering algorithm; sequence profile; residue accessible area; maximum entropy; SUPPORT VECTOR MACHINES; RECOGNITION SITES; SEQUENCE PROFILE; ATOMIC-STRUCTURE; BINDING-SITES; PREDICTION; INFORMATION; INTERFACES; CONSERVATION; COMPLEX;
D O I
10.3390/ijms10052190
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Identification of protein-protein interface residues is crucial for structural biology. This paper proposes a covering algorithm for predicting protein-protein interface residues with features including protein sequence profile and residue accessible area. This method adequately utilizes the characters of a covering algorithm which have simple, lower complexity and high accuracy for high dimension data. The covering algorithm can achieve a comparable performance (69.62%, Complete dataset; 60.86%, Trim dataset with overall accuracy) to a support vector machine and maximum entropy on our dataset, a correlation coefficient (CC) of 0.2893, 58.83% specificity, 56.12% sensitivity on the Complete dataset and 0.2144 (CC), 53.34% (specificity), 65.59% (sensitivity) on the Trim dataset in identifying interface residues by 5-fold cross-validation on 61 protein chains. This result indicates that the covering algorithm is a powerful and robust protein-protein interaction site prediction method that can guide biologists to make specific experiments on proteins. Examination of the predictions in the context of the 3-dimensional structures of proteins demonstrates the effectiveness of this method.
引用
收藏
页码:2190 / 2202
页数:13
相关论文
共 29 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Battistuz, T ;
Bhat, TN ;
Bluhm, WF ;
Bourne, PE ;
Burkhardt, K ;
Iype, L ;
Jain, S ;
Fagan, P ;
Marvin, J ;
Padilla, D ;
Ravichandran, V ;
Schneider, B ;
Thanki, N ;
Weissig, H ;
Westbrook, JD ;
Zardecki, C .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 :899-907
[2]   Improved prediction of protein-protein binding sites using a support vector machines approach [J].
Bradford, JR ;
Westhead, DR .
BIOINFORMATICS, 2005, 21 (08) :1487-1494
[3]   Predicting protein interaction sites: binding hot-spots in protein-protein and protein-ligand interfaces [J].
Burgoyne, Nicholas J. ;
Jackson, Richard M. .
BIOINFORMATICS, 2006, 22 (11) :1335-1342
[4]   Dissecting protein-protein recognition sites [J].
Chakrabarti, P ;
Janin, J .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :334-343
[5]   Prediction of interface residues in protein-protein complexes by a consensus neural network method: Test against NMR data [J].
Chen, HL ;
Zhou, HX .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2005, 61 (01) :21-35
[6]   Exploiting sequence and structure homologs to identify protein-protein binding sites [J].
Chung, JL ;
Wang, W ;
Bourne, PE .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (03) :630-640
[7]   The HSSP database of protein structure sequence alignments and family profiles [J].
Dodge, C ;
Schneider, R ;
Sander, C .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :313-315
[8]   Prediction of protein-protein interaction sites in heterocomplexes with neural networks [J].
Fariselli, P ;
Pazos, F ;
Valencia, A ;
Casadio, R .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (05) :1356-1361
[9]  
Glaser F, 2001, PROTEINS, V43, P89, DOI 10.1002/1097-0134(20010501)43:2<89::AID-PROT1021>3.0.CO
[10]  
2-H