ASYMPTOTIC ANALYSIS OF AMBROSIO-TORTORELLI ENERGIES IN LINEARIZED ELASTICITY

被引:31
作者
Focardi, M. [1 ]
Iurlano, F. [2 ]
机构
[1] Univ Florence, DiMaI U Dini, I-50134 Florence, Italy
[2] Univ Bonn, HCM, D-53115 Bonn, Germany
基金
欧洲研究理事会;
关键词
functions of bounded deformation; free discontinuity problems; fracture; VARIATIONAL APPROXIMATION; LOWER SEMICONTINUITY;
D O I
10.1137/130947180
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an approximation result in the sense of Gamma-convergence for energies of the form integral(Omega) L-1 (e(u)) dx + a Hn-1 (J(u)) + b integral (Ju) L-0(1/2) ([u] circle dot nu(u)) dH(n-1) where Omega subset of R-n is a bounded open set with Lipschitz boundary, L-0 and L-1 are coercive quadratic forms on M-sym(nxn), a, b are positive constants, and u runs in the space of fields SBD2(Omega); i.e., it's a special field with bounded deformation such that its symmetric gradient e(u) is square integrable, and its jump set J(u) has finite (n-1)-Hausdorff measure in R-n. The approximation is performed by means of Ambrosio-Tortorellitype elliptic regularizations, the prototype example being integral(Omega) (v vertical bar e(u)vertical bar(2) + gamma epsilon vertical bar del v vertical bar(2)) dx, where (u, v) is an element of H-1(Omega, R-n) x H-1(Omega), epsilon <= v <= 1, and gamma > 0.
引用
收藏
页码:2936 / 2955
页数:20
相关论文
共 35 条
[1]   Variational approximation of free-discontinuity energies with linear growth [J].
Alicandro, R ;
Focardi, M .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2002, 4 (04) :685-723
[2]  
Alicandro R., 1999, Interfaces Free Bound, V1, P17, DOI [DOI 10.4171/IFB/2, 10.4171/ifb/2]
[3]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[4]   Variational approximation of a second order free discontinuity problem in computer vision [J].
Ambrosio, L ;
Faina, L ;
March, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 32 (06) :1171-1197
[5]  
AMBROSIO L, 1992, B UNIONE MAT ITAL, V6B, P105
[6]   Fine properties of functions with bounded deformation [J].
Ambrosio, L ;
Coscia, A ;
DalMaso, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 139 (03) :201-238
[7]  
Ambrosio L., 1993, IMA MATH APPL, V53, P29
[8]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI 10.1017/S0024609301309281
[9]   A Variational Model for Plastic Slip and Its Regularization via Γ-Convergence [J].
Ambrosio, Luigi ;
Lemenant, Antoine ;
Royer-Carfagni, Gianni .
JOURNAL OF ELASTICITY, 2013, 110 (02) :201-235
[10]  
[Anonymous], 1983, METHODES MATH INFORM