Harder-Narasimhan reduction of a principal bundle

被引:29
作者
Biswas, I [1 ]
Holla, YI [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.1017/S0027763000008850
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a principal G-bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero. Under a mild assumption on the characteristic, the uniqueness is also proved when the characteristic of k is positive.
引用
收藏
页码:201 / 223
页数:23
相关论文
共 11 条
[1]   Harder-Narasimhan reduction for principal bundles over a compact Kahler manifold - Harder-Narasimhan reduction [J].
Anchouche, B ;
Azad, H ;
Biswas, I .
MATHEMATISCHE ANNALEN, 2002, 323 (04) :693-712
[2]   THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES [J].
ATIYAH, MF ;
BOTT, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505) :523-615
[3]   SEMI-STABILITY OF REDUCTIVE GROUP SCHEMES OVER CURVES [J].
BEHREND, KA .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :281-305
[4]   COHOMOLOGY GROUPS OF MODULI SPACES OF VECTOR BUNDLES ON CURVES [J].
HARDER, G ;
NARASIMHAN, MS .
MATHEMATISCHE ANNALEN, 1975, 212 (03) :215-248
[5]  
ILANGOVAN S, IN PRESS GEOMETRY RE
[6]   Picard group of the moduli spaces of G-bundles [J].
Kumar, S ;
Narasimhan, MS .
MATHEMATISCHE ANNALEN, 1997, 308 (01) :155-173
[7]  
MEHTA VB, 2002, ARITHMETIC GEOMETRY, P405
[8]   SOME REMARKS ON THE INSTABILITY FLAG [J].
RAMANAN, S ;
RAMANATHAN, A .
TOHOKU MATHEMATICAL JOURNAL, 1984, 36 (02) :269-291
[9]  
Ramanathan A., 1979, LECT NOTES MATH, V732, P527
[10]   SEMI-SIMPLICITY OF TENSOR-PRODUCTS OF REPRESENTATIONS OF GROUPS [J].
SERRE, JP .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :513-530