Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures

被引:17
作者
Choi, Sinho [1 ]
Kim, Jieun [1 ]
Hwang, Dae Yeon [1 ]
Park, Hyungmin [1 ]
Ryu, Jaegeon [1 ]
Kwak, Sang Kyu [1 ]
Park, Soojin [1 ]
机构
[1] Ulsan Natl Inst Sci & Technol, Dept Energy Engn, Sch Energy & Chem Engn, UNIST Gil 50, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Metallic/semiconducting nanowire; carbon-sheathed coaxial nanowire; redox-responsive assembly; energy storage devices; GERMANIUM NANOWIRES; ENERGY-STORAGE; GROWTH; BATTERIES; ARRAYS; DEVICES; FILMS; SI;
D O I
10.1021/acs.nanolett.5b04476
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One-dimensional metallic/semiconducting materials have demonstrated as building blocks for various potential applications. Here, we report on a unique synthesis technique for redox-responsive assembled carbon-sheathed metal/semiconducting nanowire heterostructures that does not require a metal catalyst. In our approach, germanium nanowires are grown by the reduction of germanium oxide particles and subsequent self-catalytic growth during the thermal decomposition of natural gas, and simultaneously, carbon sheath layers are uniformly coated on the nanowire surface. This process is a simple, reproducible, size-controllable, and cost-effective process whereby most metal oxides can be transformed into metallic/semiconducting nanowires. Furthermore, the germanium nanowires exhibit stable chemical/thermal stability and outstanding electrochemical performance including a capacity retention of similar to 96% after 1200 cycles at the 0.5-1C rate as lithium-ion battery anode.
引用
收藏
页码:1179 / 1185
页数:7
相关论文
共 32 条
[1]   High-resolution detection of Au catalyst atoms in Si nanowires [J].
Allen, Jonathan E. ;
Hemesath, Eric R. ;
Perea, Daniel E. ;
Lensch-Falk, Jessica L. ;
Li, Z. Y. ;
Yin, Feng ;
Gass, Mhairi H. ;
Wang, Peng ;
Bleloch, Andrew L. ;
Palmer, Richard E. ;
Lauhon, Lincoln J. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :168-173
[2]   Single-Crystalline p-Type Zn3As2 Nanowires for Field-Effect Transistors and Visible-Light Photodetectors on Rigid and Flexible Substrates [J].
Chen, Gui ;
Liu, Zhe ;
Liang, Bo ;
Yu, Gang ;
Xie, Zhong ;
Huang, Hongtao ;
Liu, Bin ;
Wang, Xianfu ;
Chen, Di ;
Zhu, Ming-Qiang ;
Shen, Guozhen .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (21) :2681-2690
[3]   Cost-Effective Scalable Synthesis of Mesoporous Germanium Particles via a Redox-Transmetalation Reaction for High-Performance Energy Storage Devices [J].
Choi, Sinho ;
Kim, Jieun ;
Choi, Nam-Soon ;
Kim, Min Gyu ;
Park, Soojin .
ACS NANO, 2015, 9 (02) :2203-2212
[4]   Organic Functionalization of Germanium Nanowires using Arenediazonium Salts [J].
Collins, Gillian ;
Fleming, Peter ;
O'Dwyer, Colm ;
Morris, Michael A. ;
Holmes, Justin D. .
CHEMISTRY OF MATERIALS, 2011, 23 (07) :1883-1891
[5]  
Cullity B. D., 1978, ELEMENTS XRAY DIFFRA
[6]   Pauling's third rule beyond the bulk: chemical bonding at quartz-type GeO2 surfaces [J].
Deringer, Volker L. ;
Dronskowski, Richard .
CHEMICAL SCIENCE, 2014, 5 (03) :894-903
[7]   Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J].
Duan, XF ;
Huang, Y ;
Cui, Y ;
Wang, JF ;
Lieber, CM .
NATURE, 2001, 409 (6816) :66-69
[8]   High density germanium nanowire assemblies: Contact challenges and electrical characterization [J].
Erts, D ;
Polyakov, B ;
Dalyt, B ;
Morris, MA ;
Ellingboe, S ;
Boland, J ;
Holmes, JD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (02) :820-826
[9]   Long germanium nanowires prepared by electrochemical etching [J].
Fang, C. ;
Foell, H. ;
Carstensen, J. .
NANO LETTERS, 2006, 6 (07) :1578-1580
[10]   The influence of the surface migration of gold on the growth of silicon nanowires [J].
Hannon, JB ;
Kodambaka, S ;
Ross, FM ;
Tromp, RM .
NATURE, 2006, 440 (7080) :69-71