An adaptive image inpainting method based on the modified Mumford-Shah model and multiscale parameter estimation

被引:26
|
作者
Thanh, D. N. H. [1 ]
Prasath, V. B. S. [2 ,3 ,4 ]
Son, N. V. [5 ,6 ]
Hieu, L. M. [7 ]
机构
[1] Hue Coll Ind, Dept Informat Technol, Hue 530000, Vietnam
[2] Cincinnati Childrens Hosp Med Ctr, Div Biomed Informat, Cincinnati, OH 45229 USA
[3] Univ Cincinnati, Coll Med, Dept Biomed Informat, Cincinnati, OH 45267 USA
[4] Univ Cincinnati, Dept Elect Engn & Comp Sci, Cincinnati, OH 45221 USA
[5] Tula State Univ, Dept Robot & Prod Adaptat, Tula 300012, Russia
[6] Mil Weapon Inst, Ballist Res Lab, Hanoi 100000, Vietnam
[7] Univ Danang, Univ Econ, Dept Econ, Danang 550000, Vietnam
关键词
image inpainting; Mumford-Shah model; modified Mumford-Shah model; regularization; Euler-Lagrange equation; inverse gradient; multiscale; NOISE REMOVAL;
D O I
10.18287/2412-6179-2019-43-2-251-257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Image inpainting is a process of filling missing and damaged parts of image. By using the Mumford-Shah image model, the image inpainting can be formulated as a constrained optimization problem. The Mumford-Shah model is a famous and effective model to solve the image inpainting problem. In this paper, we propose an adaptive image inpainting method based on multiscale parameter estimation for the modified Mumford-Shah model. In the experiments, we will handle the comparison with other similar inpainting methods to prove that the combination of classic model such the modified Mumford-Shah model and the multiscale parameter estimation is an effective method to solve the inpainting problem.
引用
收藏
页码:251 / 257
页数:7
相关论文
共 50 条
  • [41] Extended Mumford-Shah regularization in Bayesian estimation for blind image deconvolution and segmentation
    Zheng, Hongwei
    Hellwich, Olaf
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2006, 4040 : 144 - 158
  • [42] Mumford-Shah Model-Based Image Inpainting for Enhancing Protein Spot Detection in Two-Dimensional Gel Electrophoresis Images
    Rashwan, Shaheera
    2022 11TH INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND APPLICATIONS, ICICA, 2022, : 40 - 44
  • [43] Knowledge based hierarchical Mumford-Shah model for vector-valued image segmentation
    Liu, Guo-Cai
    Wang, Yao-Nan
    Duan, Xuan-Chu
    Zidonghua Xuebao/ Acta Automatica Sinica, 2009, 35 (04): : 356 - 363
  • [44] Semisupervised Soft Mumford-Shah Model for MRI Brain Image Segmentation
    Wang, Hong-Yuan
    Chen, Fuhua
    APPLIED COMPUTATIONAL INTELLIGENCE AND SOFT COMPUTING, 2016, 2016
  • [45] Generalizing Mumford-Shah Model for Multiphase Piecewise Smooth Image Segmentation
    Gu, Ying
    Xiong, Wei
    Wang, Li-Lian
    Cheng, Jierong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (02) : 942 - 952
  • [46] k-Means image segmentation using Mumford-Shah model
    Shah, Nilima
    Patel, Dhanesh
    Franti, Pasi
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (06)
  • [47] An algorithm for segmentation of jacquard images based on Mumford-Shah model
    Feng, ZL
    Yin, JW
    Chen, G
    Dong, JX
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON INTELLIGENT MECHATRONICS AND AUTOMATION, 2004, : 617 - 620
  • [48] Segmentation based on Mumford-Shah model combined with narrow band
    Wang, Z
    Yang, X
    Shi, PF
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2002, 21 (03) : 161 - 166
  • [49] Segmentation based on Mumford-Shah model combined with narrow band
    Wang, Zheng
    Yang, Xin
    Shi, Peng-Fei
    Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2002, 21 (03): : 161 - 166
  • [50] Robust multi-target tracking method based on an improved Mumford-Shah model
    Su J.
    Yin G.-S.
    Wei Z.-H.
    Liu Y.-H.
    Harbin Gongcheng Daxue Xuebao/Journal of Harbin Engineering University, 2010, 31 (09): : 1228 - 1233