Linking solutions for p-Laplace equations with nonlinearity at critical growth

被引:63
作者
Degiovanni, Marco [1 ]
Lancelotti, Sergio [2 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, I-25121 Brescia, Italy
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
p-Laplace equations; Critical growth; Nontrivial solutions; Linking structures; CRITICAL SOBOLEV EXPONENTS; QUASILINEAR ELLIPTIC-EQUATIONS; NONTRIVIAL SOLUTIONS; BIFURCATION; REGULARITY; EXISTENCE; INDEX;
D O I
10.1016/j.jfa.2009.01.016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Under a suitable condition on n and p, the quasilinear equation at critical growth -Delta(p)u = lambda vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(p*-2)u is shown to admit a nontrivial weak solution u is an element of W(0)(I,p) (Omega) for any lambda >= lambda(1) Nonstandard linking structures, for the associated functional, are recognized. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3643 / 3659
页数:17
相关论文
共 20 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
[Anonymous], 1986, CBMS REG C SER MATH
[3]  
ARIOLI G., 1998, Differential Integral Equations, V11, P311
[4]   The second bifurcation branch for radial solutions of the Brezis-Nirenberg problem in dimension four [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph ;
Sassone, Edoardo .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2008, 15 (1-2) :69-90
[5]  
AZORERO JPG, 1987, COMMUN PART DIFF EQ, V12, P1389
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]   AN EXISTENCE RESULT FOR NONLINEAR ELLIPTIC PROBLEMS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
CAPOZZI, A ;
FORTUNATO, D ;
PALMIERI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1985, 2 (06) :463-470
[8]   Nontrivial solutions for p-Laplace equations with right-hand side having p-Linear growth at infinity [J].
Cingolani, S ;
Degiovanni, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (08) :1191-1203
[9]   Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity [J].
Degiovanni, Marco ;
Lancelotti, Sergio .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06) :907-919