On the connectivity properties and energy of Fibonomial graphs

被引:3
作者
Akbulak, Mehmet [1 ]
Kale, Akin [2 ]
Oteles, Ahmet [3 ]
机构
[1] Siirt Univ, Art & Sci Fac, Dept Math, TR-56100 Siirt, Turkey
[2] Siirt Univ, Siirt Vocat High Sch, TR-56100 Siirt, Turkey
[3] Dicle Univ, Fac Educ, Dept Math, TR-21280 Diyarbakir, Turkey
关键词
Fibonomial coefficients; Graph; Connectivity; Eigenvalue; Energy; Laplacian eigenvalue; Sum; FIBONACCI NUMBERS; COEFFICIENTS;
D O I
10.1016/j.dam.2013.12.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new type of graph called a Fibonomial graph, denoted G(n). Entries of the adjacency matrix of G depend on the well-known Fibonomial coefficients modulo 2. We investigate the connectivity properties, eigenvalues, and energy of G(n). We lastly obtain the sum of the Laplacian eigenvalues of G(n). (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 25 条
[1]  
[Anonymous], 2013, Modern graph theory
[2]  
Bapat R.B., 2011, GRAPHS MATRICES
[3]  
Barnett S., 1979, Matrix Methods for Engineers and Scientists
[4]  
Benjamin AT, 2008, FIBONACCI QUART, V46-47, P7
[5]  
Christopher PR, 1997, FIBONACCI QUART, V35, P48
[6]  
Cvetkovic D.M., 2009, Applications of graph spectra
[7]   Laplacian energy of a graph [J].
Gutman, I ;
Zhou, B .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :29-37
[8]  
Gutman I., 1978, Ber. Math. Statist. Sekt. Forschungsz Graz., V103, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]
[9]  
Gutman I., 2008, PREPRINT
[10]  
HOLTE JM, 1994, FIBONACCI QUART, V32, P60