Predicting Visual Improvement After Macular Hole Surgery: A Combined Model Using Deep Learning and Clinical Features

被引:23
作者
Lachance, Alexandre [1 ,2 ]
Godbout, Mathieu [3 ]
Antaki, Fares [4 ]
Hebert, Melanie [1 ,2 ]
Bourgault, Serge [1 ,2 ]
Caissie, Mathieu [1 ,2 ]
Tourville, Eric [1 ,2 ]
Durand, Audrey [5 ]
Dirani, Ali [1 ,2 ]
机构
[1] Univ Laval, Fac Med, Quebec City, PQ, Canada
[2] Univ Laval, Dept Ophtalmol & Ootorhinolaryngol Chirurg Cervic, Ctr Univ Ophtalmol, Hop St Sacrement,CHU Quebec, Quebec City, PQ, Canada
[3] Univ Laval, Dept Informat & Genie Logiciel, Quebec City, PQ, Canada
[4] Ctr Hosp Univ Montreal CHUM, Dept Ophthalmol, Quebec City, PQ, Canada
[5] Univ Laval, Dept Genie Elect & Genie Informat, Quebec City, PQ, Canada
基金
加拿大健康研究院;
关键词
artificial intelligence; visual acuity improvement; vitrectomy; macular hole; VITRECTOMY; OUTCOMES; ACUITY;
D O I
10.1167/tvst.11.4.6
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: The purpose of this study was to assess the feasibility of deep learning (DL) methods to enhance the prediction of visual acuity (VA) improvement after macular hole (MH) surgery from a combined model using DL on high-definition optical coherence tomography (HD-OCT) B-scans and clinical features. Methods: We trained a DL convolutional neural network (CNN) using pre-operative HD-OCT B-scans of the macula and combined with a logistic regression model of preoperative clinical features to predict VA increase >= 15 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at 6 months post-vitrectomy in closed MHs. A total of 121 MHs with 242 HD-OCT B-scans and 484 clinical data points were used to train, validate, and test the model. Prediction of VA increase was evaluated using the area under the receiver operating characteristic curve (AUROC) and F1 scores. We also extracted the weight of each input feature in the hybrid model. Results: All performances are reported on the held-out test set, matching results obtained with cross-validation. Using a regression on clinical features, the AUROC was 80.6, with an F1 score of 79.7. For the CNN, relying solely on the HD-OCT B-scans, the AUROC was 72.8 +/- 14.6, with a F1 score of 61.5 +/- 23.7. For our hybrid regression model using clinical features and CNN prediction, the AUROC was 81.9 +/- 5.2, with an F1 score of 80.4 +/- 7.7. In the hybrid model, the baseline VA was the most important feature (weight = 59.1 +/- 6.9%), while the weight of HD-OCT prediction was 9.6 +/- 4.2%. Conclusions: Both the clinical data and HD-OCT models can predict postoperative VA improvement in patients undergoing vitrectomy for a MH with good discriminative performances. Combining them into a hybrid model did not significantly improve performance. Translational Relevance: OCT-based DL models can predict postoperative VA improvement following vitrectomy for MH but fusing those models with clinical data might not provide improved predictive performance.
引用
收藏
页数:14
相关论文
共 36 条
[1]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[2]   The International Vitreomacular Traction Study Group Classification of Vitreomacular Adhesion, Traction, and Macular Hole [J].
Duker, Jay S. ;
Kaiser, Peter K. ;
Binder, Susanne ;
de Smet, Marc D. ;
Gaudric, Alain ;
Reichel, Elias ;
Sadda, SriniVas R. ;
Sebag, Jerry ;
Spaide, Richard F. ;
Stalmans, Peter .
OPHTHALMOLOGY, 2013, 120 (12) :2611-2619
[3]   The Visual Outcomes of Macular Hole Surgery: A Registry-Based Study by the Australian and New Zealand Society of Retinal Specialists [J].
Essex, Rohan W. ;
Hunyor, Alex P. ;
Moreno-Betancur, Margarita ;
Yek, John T. O. ;
Kingston, Zabrina S. ;
Campbell, William G. ;
Connell, Paul P. ;
McAllister, Ian L. .
OPHTHALMOLOGY RETINA, 2018, 2 (11) :1143-1151
[4]   Surgery for idiopathic full-thickness macular hole - Two-year results of a randomized clinical trial comparing natural history, vitrectomy, and vitrectomy plus autologous serum: Moorfields macular hole study group report No. 1 [J].
Ezra, E ;
Gregor, ZJ .
ARCHIVES OF OPHTHALMOLOGY, 2004, 122 (02) :224-236
[5]   Factors predicting normal visual acuity following anatomically successful macular hole surgery [J].
Fallico, Matteo ;
Jackson, Timothy L. ;
Chronopoulos, Argyrios ;
Hattenbach, Lars-Olof ;
Longo, Antonio ;
Bonfiglio, Vincenza ;
Russo, Andrea ;
Avitabile, Teresio ;
Parisi, Francesca ;
Romano, Mario ;
Fiore, Tito ;
Cagini, Carlo ;
Lupidi, Marco ;
Frisina, Rino ;
Motta, Lorenzo ;
Rejdak, Robert ;
Nowomiejska, Katarzyna ;
Toro, Mario ;
Ventre, Luca ;
Reibaldi, Michele .
ACTA OPHTHALMOLOGICA, 2021, 99 (03) :E324-E329
[6]   Area and volume ratios for prediction of visual outcome in idiopathic macular hole [J].
Geng, Xing-Yun ;
Wu, Hui-Qun ;
Jiang, Jie-Hui ;
Jiang, Kui ;
Zhu, Jun ;
Xu, Yi ;
Dong, Jian-Cheng ;
Yan, Zhuang-Zhi .
INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2017, 10 (08) :1255-1260
[7]   NOVEL METHOD FOR ANALYZING SNELLEN VISUAL ACUITY MEASUREMENTS [J].
Gregori, Ninel Z. ;
Feuer, William ;
Rosenfeld, Philip J. .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2010, 30 (07) :1046-1050
[8]   Predicting visual success in macular hole surgery [J].
Gupta, B. ;
Laidlaw, D. A. H. ;
Williamson, T. H. ;
Shah, S. P. ;
Wong, R. ;
Wren, S. .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2009, 93 (11) :1488-1491
[9]   Array programming with NumPy [J].
Harris, Charles R. ;
Millman, K. Jarrod ;
van der Walt, Stefan J. ;
Gommers, Ralf ;
Virtanen, Pauli ;
Cournapeau, David ;
Wieser, Eric ;
Taylor, Julian ;
Berg, Sebastian ;
Smith, Nathaniel J. ;
Kern, Robert ;
Picus, Matti ;
Hoyer, Stephan ;
van Kerkwijk, Marten H. ;
Brett, Matthew ;
Haldane, Allan ;
del Rio, Jaime Fernandez ;
Wiebe, Mark ;
Peterson, Pearu ;
Gerard-Marchant, Pierre ;
Sheppard, Kevin ;
Reddy, Tyler ;
Weckesser, Warren ;
Abbasi, Hameer ;
Gohlke, Christoph ;
Oliphant, Travis E. .
NATURE, 2020, 585 (7825) :357-362
[10]   A multi-center study of prediction of macular hole status after vitrectomy and internal limiting membrane peeling by a deep learning model [J].
Hu, Yijun ;
Xiao, Yu ;
Quan, Wuxiu ;
Zhang, Bin ;
Wu, Yuqing ;
Wu, Qiaowei ;
Liu, Baoyi ;
Zeng, Xiaomin ;
Fang, Ying ;
Hu, Yu ;
Feng, Songfu ;
Yuan, Ling ;
Li, Tao ;
Cai, Hongmin ;
Yu, Honghua .
ANNALS OF TRANSLATIONAL MEDICINE, 2021, 9 (01)