LASER INDUCED POROSITY AND CRYSTALLINITY MODIFICATION OF A BIOACTIVE GLASS COATING ON TITANIUM SUBSTRATES

被引:0
|
作者
Kongsuwan, Panjawat [1 ]
Brandal, Grant B. [1 ]
Yao, Y. Lawrence [1 ]
机构
[1] Columbia Univ, Dept Mech Engn, New York, NY 10027 USA
来源
PROCEEDINGS OF THE ASME 10TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE, 2015, VOL 1 | 2015年
关键词
HYDROXYAPATITE FORMATION; SURFACE MODIFICATION; CRYSTALLIZATION; SIMULATION; DIFFUSION; IMPLANTS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Functionally graded bioactive glass coatings on bioinert metallic substrates were produced by using continuous-wave (CW) laser irradiation. The aim is to achieve strong adhesion on the substrates and high bioactivity on the top surface of a coating material for load-bearing implants in biomedical applications. The morphology and microstructure of the bioactive glass from the laser coating process were investigated as functions of processing parameters. Laser sintering mechanisms were discussed with respect to the resulting morphology and microstructure. It has been shown that double layer laser coating results in a dense bond coat layer and a porous top coat layer with lower degree of crystallinity than an enameling coating sample. The dense bond coat strongly attached to the titanium substrate with a ten microns wide mixed interfacial layer. A highly bioactive porous structure of the top coat layer is beneficial for early formation of a bone-bonding HCA layer. The numerical model developed in this work also allows for prediction of porosity and crystallinity in top coat layers of bioactive glass developed through laser induced sintering and crystallization.
引用
收藏
页数:10
相关论文
共 31 条
  • [31] Ultrashort pulse laser-induced submicron bubbles generation due to the near-surface material modification of soda-lime glass
    Lai, Shengying
    Ehrhardt, Martin
    Lorenz, Pierre
    Zajadacz, Joachim
    Han, Bing
    Lotnyk, Andriy
    Zimmer, Klaus
    OPTICS AND LASER TECHNOLOGY, 2022, 146