Structural design and thermal analysis of the vehicle LIDAR system

被引:4
作者
Cao, Jiandong [1 ]
Cheng, Xiaojin [1 ]
Shang, Jianhua [2 ]
He, Yan [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Mech & Automot Engn, Shanghai, Peoples R China
[2] Donghua Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Shanghai, Peoples R China
关键词
vehicle LIDAR; finite element analysis; thermal analysis; structure design; IMAGING LASER-RADAR;
D O I
10.1117/1.OE.59.8.084105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The vehicle LIDAR has been widely used in the fields of three-dimensional city modeling, terrain mapping, the agroforestry ecosystem, military detection, and unmanned driving for its advantages of high resolution, strong anti-interference ability, small volume, and light weight. The measurement accuracy of vehicle LIDARs is influenced by the internal heat source of the system and the external ambient temperature to a great extent. A compact vehicle LIDAR system is designed and analyzed. Combined with the distribution characteristics of the internal heat source of the LIDAR system, the temperature distribution and thermal deformation in the LIDAR system under different external temperatures are analyzed. On this basis, the laser path deviation of the LIDAR system caused by thermal deformation is also analyzed and compared. Finally, when the ambient temperature changes from -10 degrees C to 50 degrees C, the deviation of the laser output angle is within +/- 0.1 mrad by optimizing the design, which meets the requirements of the measurement accuracy of the vehicle's LIDAR. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 14 条
[1]   Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser [J].
Albota, MA ;
Heinrichs, RM ;
Kocher, DG ;
Fouche, DG ;
Player, BE ;
O'Brien, ME ;
Aull, BF ;
Zayhowski, JJ ;
Mooney, J ;
Willard, BC ;
Carlson, RR .
APPLIED OPTICS, 2002, 41 (36) :7671-7678
[2]   Gated viewing and high-accuracy three-dimensional laser radar [J].
Busck, J ;
Heiselberg, H .
APPLIED OPTICS, 2004, 43 (24) :4705-4710
[3]   Medium Altitude Airborne Geiger-mode Mapping Lidar System [J].
Clifton, William E. ;
Steele, Bradley ;
Nelson, Graham ;
Truscott, Antony ;
Itzler, Mark ;
Entwistle, Mark .
LASER RADAR TECHNOLOGY AND APPLICATIONS XX; AND ATMOSPHERIC PROPAGATION XII, 2015, 9465
[4]  
Du B., 2017, P SOC PHOTO-OPT INS
[5]   Three-dimensional laser radar with APD arrays [J].
Heinrichs, RM ;
Aull, BF ;
Marino, RM ;
Fouche, DG ;
McIntosh, AK ;
Zayhowski, JJ ;
Stephens, T ;
O'Brien, ME ;
Albota, MA .
LASER RADAR TECHNOLOGY AND APPLICATIONS VI, 2001, 4377 :106-117
[6]   High range precision laser radar system using a Pockels cell and a quadrant photodiode [J].
Jo, Sungeun ;
Kong, Hong Jin ;
Bang, Hyochoong ;
Kim, Jae-Wan ;
Jeon, Byoung Goo .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (05)
[7]   Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles [J].
Laurenzis, Martin ;
Bacher, Emmanuel ;
Christnacher, Frank .
OPTICAL ENGINEERING, 2017, 56 (12)
[8]   High-resolution 3D imaging laser radar flight test experiments [J].
Marino, RM ;
Davis, WR ;
Rich, GC ;
McLaughlin, JL ;
Lee, EI ;
Stanley, BM ;
Burnside, JW ;
Rowe, GS ;
Hatch, RE ;
Square, TE ;
Skelly, LJ ;
O'Brien, M ;
Vasile, A ;
Heinrichs, RM .
Laser Radar Technology and Applications X, 2005, 5791 :138-151
[9]   A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements [J].
Marino, RM ;
Stephens, T ;
Hatch, RE ;
McLaughlin, JL ;
Mooney, JG ;
O'Brien, ME ;
Rowe, GS ;
Adams, JS ;
Skelly, L ;
Knowlton, RC ;
Forman, SE ;
Davis, WR .
LASER RADAR TECHNOLOGY AND APPLICATIONS VIII, 2003, 5086 :1-15
[10]   RendezVous Sensor for automatic guidance of transfer vehicles to ISS concept of the operational modes depending on actual optical and geometrical-dynamical conditions [J].
Moebius, B ;
Kolk, KH .
PHOTONICS FOR SPACE ENVIRONMENTS VII, 2000, 4134 :298-309