Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles

被引:166
作者
Armaghani, Danial Jahed [1 ]
Shoib, Raja Shahrom Nizam Shah Bin Raja [1 ]
Faizi, Koohyar [2 ]
Rashid, Ahmad Safuan A. [1 ]
机构
[1] Univ Teknol Malaysia, Dept Geotech & Transportat, Fac Civil Engn, Utm Skudai 81310, Johor, Malaysia
[2] Univ Birmingham, Sch Civil Engn, Birmingham, W Midlands, England
关键词
Rock-socketed pile; Ultimate bearing capacity; ANN; PSO; Hybrid model; UNIAXIAL COMPRESSIVE STRENGTH; PREDICTION;
D O I
10.1007/s00521-015-2072-z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rock-socketed piles are commonly used in foundations built in soft ground, and thus, their bearing capacity is a key issue of universal concern in research, design and construction. The accurate prediction of the ultimate bearing capacity (Q (u)) of rock-socketed piles is a difficult task due to the uncertainty surrounding the various factors that affect this capacity. This study was aimed at developing an artificial neural network (ANN) model, as well as a hybrid model based on both particle swarm optimisation (PSO) and ANN, with which to predict the Q (u) of rock-socketed piles. PSO, a powerful population-based algorithm used in solving continuous and discrete optimisation problems, was here employed as a robust global search algorithm to determine ANN weights and biases and thereby improve model performance. To achieve the study aims, 132 piles socketed in various rock types as part of the Klang Valley Mass Rapid Transit project, Malaysia, were investigated. Based on previous related investigations, parameters with the most influence on Q (u) were identified and utilised in the modelling procedure of the intelligent systems. After constructing and modelling these systems, selected performance indices including the coefficient of determination (R (2)), root-mean-square error, variance account for and total ranking were used to identify the best models and compare the obtained results. This analysis revealed that the hybrid PSO-ANN model offers a higher degree of accuracy compared to conventional ANN for predicting the Q (u) of rock-socketed piles. However, the developed model would be most useful in the preliminary stages of pile design and should be used with caution.
引用
收藏
页码:391 / 405
页数:15
相关论文
共 16 条
[1]  
[Anonymous], 2004, P 7 INT C APPL STRES
[2]  
[Anonymous], 2001, Aust Geomech
[3]  
[Anonymous], 2015, D555006 ASTM
[4]  
[Anonymous], ASCE J GEOTECH ENG
[5]  
Fellenius B.H., 1984, Deep Foundations Journal, Deep Foundations Institute, V1, P49
[6]   A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock [J].
Gokceoglu, C ;
Zorlu, K .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2004, 17 (01) :61-72
[7]   Evaluation of blast-induced ground vibration predictors [J].
Khandelwal, Manoj ;
Singh, T. N. .
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2007, 27 (02) :116-125
[8]   Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data [J].
Kordjazi, A. ;
Nejad, F. Pooya ;
Jaksa, M. B. .
COMPUTERS AND GEOTECHNICS, 2014, 55 :91-102
[9]   Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system [J].
Mishra, D. A. ;
Basu, A. .
ENGINEERING GEOLOGY, 2013, 160 :54-68
[10]   Prediction of pile bearing capacity using a hybrid genetic algorithm-based ANN [J].
Momeni, E. ;
Nazir, R. ;
Armaghani, D. Jahed ;
Maizir, H. .
MEASUREMENT, 2014, 57 :122-131