Neumann function for a hyperbolic strip and a class of related plane domains

被引:16
作者
Akel, M. [1 ,2 ]
Begehr, H. [3 ]
机构
[1] King Faisal Univ Al Ahsaa, Dept Math & Stat, Coll Sci, POB 380, Al Hasa 31982, Saudi Arabia
[2] South Valley Univ, Dept Math, Fac Sci, Qena 83523, Egypt
[3] Free Univ Berlin, Inst Mathemat, Arnimallee 3, D-14195 Berlin, Germany
关键词
Harmonic Neumann function; hyperbolic strip; parqueting-reflection principle; Neumann problem; Poisson equation;
D O I
10.1002/mana.201500501
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The harmonic Neumann function is constructed for a class of hyperbolic strips inside the unit disc via the parqueting-reflection principle. As it turns out this Neumann function is related to the respective Green function, see [the second author, Green function for a hyperbolic strip and a class of related plane domains, Appl. Anal. 93(2014), 2370-2385], in the same way as for the case of e.g. the unit disc or half planes, etc. On this basis the Neumann problem for the Poisson equation is solved in an explicit way. Such explicit solutions serve for applications as in engineering or mathematical physics. (C) 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:490 / 506
页数:17
相关论文
共 14 条
[1]   A Riemann-Hilbert boundary value problem in a bounded sector [J].
Akel, Mohamed S. ;
Alabbad, F. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (04) :493-509
[2]  
Akosy U, 2010, ADV DYN SYST APPL, V5
[3]   Iterated Neumann problem for the higher order Poisson equation [J].
Begehr, H ;
Vanegas, CJ .
MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) :38-57
[4]   Green function for a hyperbolic strip and a class of related plane domains [J].
Begehr, H. .
APPLICABLE ANALYSIS, 2014, 93 (11) :2370-2385
[5]   Schwarz problem in lens and lune [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2014, 59 (01) :76-84
[6]   Harmonic Dirichlet problem for some equilateral triangle [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) :185-196
[7]   How to find harmonic Green functions in the plane [J].
Begehr, H. ;
Vaitekhovich, T. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2011, 56 (12) :1169-1181
[8]  
Begehr H., 1994, COMPLEX ANAL METHODS
[9]  
Begehr H., 2013, ANAL METHODS ANAL DI, P11
[10]  
Begehr H., 2005, Bol. Asoc. Mat. Venez, V12, P217