Ergodic Exploration of Distributed Information

被引:77
作者
Miller, Lauren M. [1 ]
Silverman, Yonatan [1 ]
MacIver, Malcolm A. [1 ,2 ]
Murphey, Todd D. [1 ]
机构
[1] Northwestern Univ, Dept Mech Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Biomed Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Biologically inspired robots; information-driven sensor planning; motion control; search problems; LOCALIZATION; SEARCH; COVERAGE; ROBOTICS;
D O I
10.1109/TRO.2015.2500441
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper presents an active search trajectory synthesis technique for autonomous mobile robots with nonlinear measurements and dynamics. The presented approach uses the ergodicity of a planned trajectory with respect to an expected information density map to close the loop during search. The ergodic control algorithm does not rely on discretization of the search or action spaces and is well posed for coverage with respect to the expected information density whether the information is diffuse or localized, thus trading off between exploration and exploitation in a single-objective function. As a demonstration, we use a robotic electrolocation platform to estimate location and size parameters describing static targets in an underwater environment. Our results demonstrate that the ergodic exploration of distributed information algorithm outperforms commonly used information-oriented controllers, particularly when distractions are present.
引用
收藏
页码:36 / 52
页数:17
相关论文
共 83 条
[71]  
Hoang TN, 2014, PR MACH LEARN RES, V32, P739
[72]  
Ucinski D., 1999, Proceedings of the First Workshop on Robot Motion and Control. RoMoCo'99 (Cat. No.99EX353), P273, DOI 10.1109/ROMOCO.1999.791086
[73]   Optimal sensor location for parameter estimation of distributed processes [J].
Ucinski, D .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (13) :1235-1248
[74]  
Vander Hook J, 2012, IEEE INT CONF ROBOT, P1787, DOI 10.1109/ICRA.2012.6225244
[75]  
Vazquez P.-P., 2001, Vision, Modeling, and Visualization 2001. Proceedings, P273
[76]  
Wang Yunfng, 2002, P IEEE INT C ROB AUT, V2, P1525
[77]   Trajectory Synthesis for Fisher Information Maximization [J].
Wilson, Andrew D. ;
Schultz, Jarvis A. ;
Murphey, Todd D. .
IEEE TRANSACTIONS ON ROBOTICS, 2014, 30 (06) :1358-1370
[78]  
Wong EM, 2005, IEEE INT CONF ROBOT, P3169
[79]   Sensor planning for 3D object search [J].
Ye, YM ;
Tsotsos, JK .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1999, 73 (02) :145-168
[80]   An Information Roadmap Method for Robotic Sensor Path Planning [J].
Zhang, G. ;
Ferrari, S. ;
Qian, M. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2009, 56 (1-2) :69-98