Flipping nanoscale ripples of free-standing graphene using a scanning tunneling microscope tip

被引:20
作者
Breitwieser, Romain [1 ]
Hu, Yu-Cheng [1 ]
Chao, Yen Cheng [1 ]
Li, Ren-Jie [2 ]
Tzeng, Yi Ren [3 ]
Li, Lain-Jong [4 ]
Liou, Sz-Chian [1 ]
Lin, Keng Ching [2 ]
Chen, Chih Wei [1 ]
Pai, Woei Wu [1 ]
机构
[1] Natl Taiwan Univ, Ctr Condensed Matter Sci, Taipei 106, Taiwan
[2] Catholic Fu Jen Univ, Dept Phys, Taipei 242, Taiwan
[3] Inst Nucl Energy Res, Taoyuan 325, Taiwan
[4] Acad Sinica, Inst Atom & Mol Sci, Taipei 106, Taiwan
关键词
SUSPENDED GRAPHENE; MONOLAYER GRAPHENE; RESONATORS; DYNAMICS; SHEETS;
D O I
10.1016/j.carbon.2014.05.026
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a scanning tunneling microscopy study of the stress-strain behavior of a rippled single-layer free-standing graphene (FSG) and report that FSG exhibits a non-linear sigmoidal stress-strain behavior. We managed to pull and push nanoripples by controlling the STM tip-FSG interaction forces. In this way, we found that the initial deformations of a rippled FSG involve sign reversals of the nanoripple's local curvatures, termed "flipping". In contrast to elastic deformation of graphene, flipping of a FSG nanoripple encounters a stress barrier and therefore makes a rippled FSG metastable, as evidenced by monitoring a yielding process in both experiments and molecular dynamics simulations. The evolution of nanoripples subjected to STM control is also fully consistent with atom-resolved images. Our work therefore shows how rippled 2D carbon deforms at nanoscale. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:236 / 243
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 1950, THEORY FLOW FRACTURE
[2]   Manifestation of ripples in free-standing graphene in lattice images obtained in an aberration-corrected scanning transmission electron microscope [J].
Bangert, U. ;
Gass, M. H. ;
Bleloch, A. L. ;
Nair, R. R. ;
Geim, A. K. .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2009, 206 (06) :1117-1122
[3]  
Bao WZ, 2009, NAT NANOTECHNOL, V4, P562, DOI [10.1038/nnano.2009.191, 10.1038/NNANO.2009.191]
[4]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[5]  
Chen CY, 2009, NAT NANOTECHNOL, V4, P861, DOI [10.1038/NNANO.2009.267, 10.1038/nnano.2009.267]
[6]  
Crowley J. M., 2008, ESA ANN M EL
[7]   Probing from Both Sides: Reshaping the Graphene Landscape via Face-to-Face Dual-Probe Microscopy [J].
Eder, Franz R. ;
Kotakoski, Jani ;
Holzweber, Katharina ;
Mangler, Clemens ;
Skakalova, Viera ;
Meyer, Jannik C. .
NANO LETTERS, 2013, 13 (05) :1934-1940
[8]   Intrinsic ripples in graphene [J].
Fasolino, A. ;
Los, J. H. ;
Katsnelson, M. I. .
NATURE MATERIALS, 2007, 6 (11) :858-861
[9]   Dielectric function, screening, and plasmons in two-dimensional graphene [J].
Hwang, E. H. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2007, 75 (20)
[10]   Electromechanical Properties of Graphene Drumheads [J].
Klimov, Nikolai N. ;
Jung, Suyong ;
Zhu, Shuze ;
Li, Teng ;
Wright, C. Alan ;
Solares, Santiago D. ;
Newell, David B. ;
Zhitenev, Nikolai B. ;
Stroscio, Joseph A. .
SCIENCE, 2012, 336 (6088) :1557-1561