Representable Effect Algebras and Observables

被引:10
作者
Dvurecenskij, Anatolij [1 ,2 ]
机构
[1] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[2] Palacky Univ, Dept Algebra & Geometry, Olomouc 77146, Czech Republic
关键词
Effect algebra; Compatibility; Strong-compatible; Internal compatibility; Monotone sigma-completeness; Homogeneous algebra; Observable; Block; LOOMIS-SIKORSKI THEOREM; MV-ALGEBRAS; BLOCKS;
D O I
10.1007/s10773-014-2083-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a class of monotone sigma-complete effect algebras, called representable, which are sigma-homomorphic images of a class of monotone sigma-complete effect algebras of functions taking values in the interval [0, 1] and with effect algebra operations defined by points. We exhibit different types of compatibilities and show their connection to representability. Finally, we study observables and show situations when information of an observable on all intervals of the form (-a, t) gives full information about the observable.
引用
收藏
页码:2855 / 2866
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[2]   Loomis-Sikorski representation of monotone σ-complete effect algebras [J].
Buhagiar, D ;
Chetcuti, E ;
Dvurecenskij, A .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :683-690
[3]  
Catlin D., 1968, INT J THEOR PHYS, V1, P285, DOI DOI 10.1007/BF00668669
[4]  
Chang C.C., 1958, T AM MATH SOC, V88, P467
[5]   Loomis-Sikorski theorem for σ-complete MV-algebras and l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 68 :261-277
[6]   Effect algebras which can be covered by MV-algebras [J].
Dvurecenskij, A .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (02) :221-229
[7]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S, P541
[8]  
Dvurecenskij A., 1993, GLEASONS THEOREM ITS, p[325, xv]
[9]   Observables on quantum structures [J].
Dvurecenskij, Anatolij ;
Kukova, Maria .
INFORMATION SCIENCES, 2014, 262 :215-222
[10]   EFFECT ALGEBRAS AND UNSHARP QUANTUM-LOGICS [J].
FOULIS, DJ ;
BENNETT, MK .
FOUNDATIONS OF PHYSICS, 1994, 24 (10) :1331-1352