Optimisation of region-specific reference gene selection and relative gene expression analysis methods for pre-clinical trials of Huntington's disease

被引:45
作者
Benn, Caroline L. [1 ]
Fox, Helen [1 ]
Bates, Gillian P. [1 ]
机构
[1] Kings Coll London, Sch Med, Guys Hosp, London SE1 9RT, England
基金
英国惠康基金;
关键词
D O I
10.1186/1750-1326-3-17
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background: Transcriptional dysregulation is an early, key pathogenic mechanism in Huntington's disease (HD). Therefore, gene expression analyses have biomarker potential for measuring therapeutic efficacy in pre-clinical trials, particularly those aimed at correcting gene expression abnormalities. Housekeeping genes are commonly used as endogenous references in gene expression studies. However, a systematic study comparing the suitability of candidate reference genes for use in HD mouse models has not been performed. To remedy this situation, 12 housekeeping genes were examined to identify suitable reference genes for use in expression assays. Results: We found that commonly used reference genes are dysregulated at later time points in the R6/2 mouse model of HD. Therefore, in order to reliably measure gene expression changes for use as pre-clinical trial biomarkers, we set out to identify suitable reference genes for use in R6/2 mice. The expression of potential reference genes was examined in striatum, cortex and cerebellum from 15 week old R6/2 and matched wild-type littermates. Expression levels of candidate reference genes varied according to genotype and brain region. GeNorm software was used to identify the three most stably expressed genes for each brain region. Relative quantification methods using the geometric mean of three reference genes for normalisation enables accurate determination of gene expression levels in wild-type and R6/2 mouse brain regions. Conclusion: Our study has identified a reproducible, reliable method by which we able to accurately determine the relative expression level of target genes in specific brain regions, thus increasing the potential of gene expression analysis as a biomarker in HD pre-clinical trials.
引用
收藏
页数:17
相关论文
共 54 条
[1]  
[Anonymous], 2002, Huntington's disease
[2]   Brain-derived neurotrophic factor-mediated protection of striatal neurons in an excitotoxic rat model of Huntington's disease, as demonstrated by adenoviral gene transfer [J].
Bemelmans, AP ;
Horellou, P ;
Pradier, L ;
Brunet, I ;
Colin, P ;
Mallet, J .
HUMAN GENE THERAPY, 1999, 10 (18) :2987-2997
[3]   Huntingtin Modulates Transcription, Occupies Gene Promoters In Vivo, and Binds Directly to DNA in a Polyglutamine-Dependent Manner [J].
Benn, Caroline L. ;
Sun, Tingting ;
Sadri-Vakili, Ghazaleh ;
McFarland, Karen N. ;
DiRocco, Derek P. ;
Yohrling, George J. ;
Clark, Timothy W. ;
Bouzou, Berengere ;
Cha, Jang-Ho J. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (42) :10720-10733
[4]   Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease [J].
Borovecki, F ;
Lovrecic, L ;
Zhou, J ;
Jeong, H ;
Then, F ;
Rosas, HD ;
Hersch, SM ;
Hogarth, P ;
Bouzou, B ;
Jensen, RV ;
Krainc, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) :11023-11028
[5]  
BROWN TB, 2008, HUM MO IN PRESS 0716
[6]   Histone deacetylase inhibitors as therapeutics for polyglutamine disorders [J].
Butler, Rachel ;
Bates, Gillian P. .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (10) :784-796
[7]   A transcriptome database for astrocytes, neurons, and oligodendrocytes: A new resource for understanding brain development and function [J].
Cahoy, John D. ;
Emery, Ben ;
Kaushal, Amit ;
Foo, Lynette C. ;
Zamanian, Jennifer L. ;
Christopherson, Karen S. ;
Xing, Yi ;
Lubischer, Jane L. ;
Krieg, Paul A. ;
Krupenko, Sergey A. ;
Thompson, Wesley J. ;
Barres, Ben A. .
JOURNAL OF NEUROSCIENCE, 2008, 28 (01) :264-278
[8]   Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington's disease [J].
Canals, JM ;
Pineda, JR ;
Torres-Peraza, JF ;
Bosch, M ;
Martín-Ibañez, R ;
Muñoz, MT ;
Mengod, G ;
Ernfors, P ;
Alberch, J .
JOURNAL OF NEUROSCIENCE, 2004, 24 (35) :7727-7739
[9]   Transcriptional signatures in Huntington's disease [J].
Cha, Jang-Ho J. .
PROGRESS IN NEUROBIOLOGY, 2007, 83 (04) :228-248
[10]  
COOPER MJ, 1990, CANCER RES, V50, P3694