1-2 model, dimers, and clusters

被引:5
作者
Li, Zhongyang [1 ]
机构
[1] Univ Cambridge, Cambridge CB2 1TN, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2014年 / 19卷
基金
英国工程与自然科学研究理事会;
关键词
1-2; model; perfect matching; dimer; percolation; LATTICE; STATISTICS;
D O I
10.1214/EJP.v19-2563
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A 1-2 model configuration is a subgraph of the hexagonal lattice, in which the edge-degree of each vertex is either 1 or 2. We prove that for any translation invariant Gibbs measure of the 1-2 model configurations on the whole-plane hexagonal lattice, almost surely there are no infinite paths. Using a measure-preserving correspondence between 1-2 model configurations on the hexagonal lattice and perfect matchings on a decorated graph, we construct an explicit translation invariant Gibbs measure for 1-2 model configurations on the bi-periodic hexagonal lattice. We prove that the behaviors of infinite clusters are different for small and large local weights, which shows the existence of a phase transition.
引用
收藏
页数:28
相关论文
共 19 条
[1]   Determinantal Processes and Independence [J].
Ben Hough, J. ;
Krishnapur, Manjunath ;
Peres, Yuval ;
Virag, Balint .
PROBABILITY SURVEYS, 2006, 3 :206-229
[2]   Group-invariant percolation on graphs [J].
Benjamini, I ;
Lyons, R ;
Peres, Y ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (01) :29-66
[3]  
Benjamini Itai, 2001, Electron. J. Probab., V6
[4]   The critical Z-invariant Ising model via dimers: the periodic case [J].
Boutillier, Cedric ;
de Tiliere, Beatrice .
PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (3-4) :379-413
[5]   A variational principle for domino tilings [J].
Cohn, H ;
Kenyon, R ;
Propp, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :297-346
[6]   The connective constant of the honeycomb lattice equals √2+√2 [J].
Duminil-Copin, Hugo ;
Smirnov, Stanislav .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1653-1665
[7]   ON DIMER SOLUTION OF PLANAR ISING MODELS [J].
FISHER, ME .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (10) :1776-&
[8]  
Grimmett G., 1999, PERCOLATION, DOI DOI 10.1007/978-3-662-03981-6
[9]  
Grimmett Geoffrey., 2006, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, DOI [10.1007/978-3-540-32891-9, DOI 10.1007/978-3-540-32891-9]
[10]   STATISTICS OF DIMERS ON A LATTICE .1. NUMBER OF DIMER ARRANGEMENTS ON A QUADRATIC LATTICE [J].
KASTELEYN, P .
PHYSICA, 1961, 27 (12) :1209-+