Dynamical analysis of a cubic Lienard system with global parameters

被引:44
作者
Chen, Hebai [1 ]
Chen, Xingwu [2 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
关键词
bifurcation diagram; global phase portrait; homoclinic loop; limit cycle; EQUATIONS; PERTURBATION; DEGREE-4;
D O I
10.1088/0951-7715/28/10/3535
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the dynamical behaviour of a cubic Lienard system with global parameters. After analysing the qualitative properties of all the equilibria and judging the existences of limit cycles and homoclinic loops for the whole parameter plane, we give the bifurcation diagram and phase portraits. Phase portraits are global if there exist limit cycles and local otherwise. We prove that parameters lie in a connected region, not just on a curve, usually in the parameter plane when the system has one homoclinic loop. Moreover, for global parameters we give a positive answer to conjecture 3.2 of (1998 Nonlinearity 11 1505-19) in the case of exactly two equilibria about the existence of some function whose graph is exactly the surface of double limit cycles.
引用
收藏
页码:3535 / 3562
页数:28
相关论文
共 17 条
[1]  
[Anonymous], 1982, Methods of Bifurcation Theory
[2]  
[Anonymous], 1964, Non-linear Differential Equations
[3]  
[Anonymous], 1994, Normal Forms and Bifurcation of Planar Vector Fields, DOI [10.1017/CBO9780511665639, DOI 10.1017/CBO9780511665639]
[4]  
Chen HB, 2015, Q APPL MATH, V73, P365
[5]   CUBIC LIENARD EQUATIONS WITH LINEAR DAMPING [J].
DUMORTIER, F ;
ROUSSEAU, C .
NONLINEARITY, 1990, 3 (04) :1015-1039
[6]   On the uniqueness of limit cycles surrounding one or more singularities for Lienard equations [J].
Dumortier, F ;
Li, CZ .
NONLINEARITY, 1996, 9 (06) :1489-1500
[7]   Perturbations from an elliptic Hamiltonian of degree four - II. Cuspidal loop [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (02) :209-243
[8]   Perturbation from an elliptic Hamiltonian of degree four - IV figure eight-loop [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (02) :512-554
[9]   Perturbation from an elliptic Hamiltonian of degree four - III global centre [J].
Dumortier, F ;
Li, CZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 188 (02) :473-511
[10]  
Dumortier F, 2006, UNIVERSITEXT, P1