Nitriding-Interface-Regulated Lithium Plating Enables Flame-Retardant Electrolytes for High-Voltage Lithium Metal Batteries

被引:196
作者
Tan, Shuang-Jie [1 ,2 ]
Yue, Junpei [1 ]
Hu, Xin-Cheng [1 ,2 ]
Shen, Zhen-Zhen [1 ,2 ]
Wang, Wen-Peng [1 ,2 ]
Li, Jin-Yi [1 ,2 ]
Zuo, Tong-Tong [1 ,2 ]
Duan, Hui [1 ,2 ]
Xiao, Yao [1 ]
Yin, Ya-Xia [1 ,2 ]
Wen, Rui [1 ,2 ]
Guo, Yu-Guo [1 ,2 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, CAS Res Educ Ctr Excellence Mol Sci, BNLMS,Inst Chem, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划; 北京市自然科学基金; 中国国家自然科学基金;
关键词
batteries; interfaces; lithium metal anodes; nonflammable electrolytes; COMPARATIVE PERFORMANCE EVALUATION; ION BATTERIES; INTERPHASE LAYER; LI-ION; ADDITIVES; ANODE; CONDUCTIVITY; SAFETY; FIRE;
D O I
10.1002/anie.201903466
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Safety concerns are impeding the applications of lithium metal batteries. Flame-retardant electrolytes, such as organic phosphates electrolytes (OPEs), could intrinsically eliminate fire hazards and improve battery safety. However, OPEs show poor compatibility with Li metal though the exact reason has yet to be identified. Here, the lithium plating process in OPEs and Li/OPEs interface chemistry were investigated through ex situ and in situ techniques, and the cause for this incompatibility was revealed to be the highly resistive and inhomogeneous interfaces. Further, a nitriding interface strategy was proposed to ameliorate this issue and a Li metal anode with an improved Li cycling stability (300h) and dendrite-free morphology is achieved. Meanwhile, the full batteries coupled with nickel-rich cathodes, such as LiNi0.8Co0.1Mn0.1O2, show excellent cycling stability and outstanding safety (passed the nail penetration test). This successful nitriding-interface strategy paves a new way to handle the incompatibility between electrode and electrolyte.
引用
收藏
页码:7802 / 7807
页数:6
相关论文
共 42 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   IONIC-CONDUCTIVITY IN LI3N SINGLE-CRYSTALS [J].
ALPEN, UV ;
RABENAU, A ;
TALAT, GH .
APPLIED PHYSICS LETTERS, 1977, 30 (12) :621-623
[3]  
[Anonymous], 2013, ANGEW CHEM, V125, P13426
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[6]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[7]   Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries - II. Full Cell Cycling and Postmortem Analyses [J].
Dagger, Tim ;
Niehoff, Philip ;
Luerenbaum, Constantin ;
Schappacher, Falko M. ;
Winter, Martin .
ENERGY TECHNOLOGY, 2018, 6 (10) :2023-2035
[8]   Comparative Performance Evaluation of Flame Retardant Additives for Lithium Ion Batteries - I. Safety, Chemical and Electrochemical Stabilities [J].
Dagger, Tim ;
Rad, Babak R. ;
Schappacher, Falko M. ;
Winter, Martin .
ENERGY TECHNOLOGY, 2018, 6 (10) :2011-2022
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries [J].
Fan, Xiulin ;
Chen, Long ;
Borodin, Oleg ;
Ji, Xiao ;
Chen, Ji ;
Hou, Singyuk ;
Deng, Tao ;
Zheng, Jing ;
Yang, Chongyin ;
Liou, Sz-Chian ;
Amine, Khalil ;
Xu, Kang ;
Wang, Chunsheng .
NATURE NANOTECHNOLOGY, 2018, 13 (08) :715-+