Intense infrared lasers for strong-field science

被引:41
作者
Chang, Zenghu [1 ,2 ]
Fang, Li [2 ]
Fedorov, Vladimir [3 ]
Geiger, Chase [1 ,2 ]
Ghimire, Shambhu [4 ]
Heide, Christian [4 ]
Ishii, Nobuhisa [5 ]
Itatani, Jiro [5 ]
Joshi, Chandrashekhar [6 ]
Kobayashi, Yuki [4 ]
Kumar, Prabhat [7 ]
Marra, Alphonse [1 ,2 ]
Mirov, Sergey [3 ]
Petrushina, Irina [8 ]
Polyanskiy, Mikhail [9 ]
Reis, David A. [4 ]
Tochitsky, Sergei [6 ]
Vasilyev, Sergey [10 ]
Wang, Lifeng [1 ,2 ]
Wu, Yi [1 ,2 ]
Zhou, Fangjie [1 ,2 ]
机构
[1] CREOL, Inst Frontier Attosecond Sci & Technol iFAST, 4000 Cent Florida Blvd, Orlando, FL 32816 USA
[2] Univ Cent Florida, Dept Phys, 4111 Libra Dr, Orlando, FL 32816 USA
[3] Univ Alabama Birmingham, Dept Phys, CH 310, 1530 3rd Ave South, Birmingham, AL 35294 USA
[4] Stanford PULSE Inst, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[5] Univ Tokyo, Inst Solid State Phys, Kashiwanoha 5-1-5, Kashiwa, Chiba 2778581, Japan
[6] Univ Calif Los Angeles, Dept Elect Engn, Neptune Lab, 420 Westwood Plaza, Los Angeles, CA 90095 USA
[7] Lawrence Berkeley Natl Lab, Ctr Computat Sci & Engn, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[8] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
[9] Brookhaven Natl Lab, Bldg 820M, Upton, NY 11973 USA
[10] IPG Photon Southeast Technol Ctr, 100 Lucerne Lane, Birmingham, AL 35211 USA
基金
美国国家科学基金会; 日本学术振兴会;
关键词
CARRIER-ENVELOPE-PHASE; OPTICAL PARAMETRIC AMPLIFICATION; CHIRPED-PULSE AMPLIFICATION; HIGH-HARMONIC-GENERATION; FEW-CYCLE PULSES; 2.1; MU-M; HIGH-REPETITION-RATE; HIGH-AVERAGE-POWER; TI-SAPPHIRE LASER; NONLINEAR REFRACTIVE-INDEX;
D O I
10.1364/AOP.454797
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The advent of chirped-pulse amplification in the 1980s and femtosecond Ti:sapphire lasers in the 1990s enabled transformative advances in intense laser-matter interaction physics. Whereas most of experiments have been conducted in the limited near-infrared range of 0.8-1 mu m, theories predict that many physical phenomena such as high harmonic generation in gases favor long laser wavelengths in terms of extending the high-energy cutoff. Significant progress has been made in developing few-cycle, carrier-envelope phase-stabilized, high-peak-power lasers in the 1.6-2 mu m range that has laid the founda-tion for attosecond X ray sources in the water window. Even longer wavelength lasers are becoming available that are suitable to study light filamentation, high harmonic gen-eration, and laser-plasma interaction in the relativistic regime. Long-wavelength lasers are suitable for sub-bandgap strong-field excitation of a wide range of solid materials, including semiconductors. In the strong-field limit, bulk crystals also produce high-order harmonics. In this review, we first introduce several important wavelength scaling laws in strong-field physics, then describe recent breakthroughs in short-(1.4-3 mu m), mid -(3-8 mu m), and long-wave (8-15 mu m) infrared laser technology, and finally provide exam-ples of strong-field applications of these novel lasers. Some of the broadband ultrafast infrared lasers will have profound effects on medicine, environmental protection, and national defense, because their wavelengths cover the water absorption band, the molec-ular fingerprint region, as well as the atmospheric infrared transparent window.(c) 2022 Optica Publishing Group
引用
收藏
页码:652 / 782
页数:131
相关论文
共 627 条
[1]   BROADENING COEFFICIENTS FOR P(20) CO2-LASER TRANSITION [J].
ABRAMS, RL .
APPLIED PHYSICS LETTERS, 1974, 25 (10) :609-611
[2]   CHARACTERISTICS OF A MODE-LOCKED TEA CO2 LASER [J].
ABRAMS, RL ;
WOOD, OR .
APPLIED PHYSICS LETTERS, 1971, 19 (12) :518-+
[3]   5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz [J].
Adachi, S. ;
Ishii, N. ;
Kanai, T. ;
Kosuge, A. ;
Itatani, J. ;
Kobayashi, Y. ;
Yoshitomi, D. ;
Torizuka, K. ;
Watanabe, S. .
OPTICS EXPRESS, 2008, 16 (19) :14341-14352
[4]   Growth of Cr- and Co-doped CdSe crystals from high-temperature selenium solutions [J].
Adetunji, OO ;
Roy, N ;
Cui, Y ;
Wright, G ;
Ndap, JO ;
Burger, A .
JOURNAL OF ELECTRONIC MATERIALS, 2002, 31 (07) :795-798
[5]  
Aggarwal R. L., 1977, NONLINEAR INFRARED G
[6]   FREE-FREE TRANSITIONS FOLLOWING 6-PHOTON IONIZATION OF XENON ATOMS [J].
AGOSTINI, P ;
FABRE, F ;
MAINFRAY, G ;
PETITE, G ;
RAHMAN, NK .
PHYSICAL REVIEW LETTERS, 1979, 42 (17) :1127-1130
[7]   High-energy, diode-pumped, picosecond Yb:YAG chirped-pulse regenerative amplifier for pumping optical parametric chirped-pulse amplification [J].
Akahane, Y. ;
Aoyama, M. ;
Ogawa, K. ;
Tsuji, K. ;
Tokita, S. ;
Kawanaka, J. ;
Nishioka, H. ;
Yamakawa, K. .
OPTICS LETTERS, 2007, 32 (13) :1899-1901
[8]   Generation of relativistic intensity pulses at a kilohertz repetition rate [J].
Albert, O ;
Wang, H ;
Liu, D ;
Chang, Z ;
Mourou, G .
OPTICS LETTERS, 2000, 25 (15) :1125-1127
[9]   ULTRA-FAST SWITCHING OF INFRARED RADIATION BY LASER-PRODUCED CARRIERS IN SEMICONDUCTORS [J].
ALCOCK, AJ ;
CORKUM, PB .
CANADIAN JOURNAL OF PHYSICS, 1979, 57 (09) :1280-1290
[10]   Efficient cryogenic near-infrared Tm:YLF laser [J].
Aleshire, Christopher E. ;
Yu, Charles X. ;
Reed, Patricia A. ;
Fan, Tso Yee .
OPTICS EXPRESS, 2017, 25 (12) :13408-13413