Influence of architecture and material properties on vanadium redox flow battery performance

被引:154
作者
Houser, Jacob [1 ,2 ]
Clement, Jason [1 ]
Pezeshki, Alan [2 ,3 ]
Mench, Matthew M. [1 ,4 ]
机构
[1] Univ Tennessee, Dept Mech Aerosp & Biomed Engn, Knoxville, TN 37996 USA
[2] Univ Tennessee, Bredesen Ctr Interdisciplinary Res & Grad Educ, Knoxville, TN 37996 USA
[3] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[4] Oak Ridge Natl Lab, Energy & Transportat Sci Div, Oak Ridge, TN 37831 USA
基金
美国国家科学基金会;
关键词
Redox flow batteries; Convective mass transport; Flow field design; ELECTROLYTE FUEL-CELL; COMPOSITE MEMBRANE; CURRENT-DENSITY; FIELD DESIGNS; MANAGEMENT; STORAGE; LAYER; PEFC;
D O I
10.1016/j.jpowsour.2015.09.095
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This publication reports a design optimization study of all-vanadium redox flow batteries (VRBs), including performance testing, distributed current measurements, and flow visualization. Additionally, a computational flow simulation is used to support the conclusions made from the experimental results. This study demonstrates that optimal flow field design is not simply related to the best architecture, but is instead a more complex interplay between architecture, electrode properties, electrolyte properties, and operating conditions which combine to affect electrode convective transport For example, an interdigitated design outperforms a serpentine design at low flow rates and with a thin electrode, accessing up to an additional 30% of discharge capacity; but a serpentine design can match the available discharge capacity of the interdigitated design by increasing the flow rate or the electrode thickness due to differing responses between the two flow fields. The results of this study should be useful to design engineers seeking to optimize VRB systems through enhanced performance and reduced pressure drop. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:369 / 377
页数:9
相关论文
共 41 条
[1]   Dramatic performance gains in vanadium redox flow batteries through modified cell architecture [J].
Aaron, D. S. ;
Liu, Q. ;
Tang, Z. ;
Grim, G. M. ;
Papandrew, A. B. ;
Turhan, A. ;
Zawodzinski, T. A. ;
Mench, M. M. .
JOURNAL OF POWER SOURCES, 2012, 206 :450-453
[2]   In Situ Kinetics Studies in All-Vanadium Redox Flow Batteries [J].
Aaron, Douglas ;
Sun, Che-Nan ;
Bright, Michael ;
Papandrew, Alexander B. ;
Mench, Matthew M. ;
Zawodzinski, Thomas A. .
ECS ELECTROCHEMISTRY LETTERS, 2013, 2 (03) :A29-A31
[3]   Non-isothermal modelling of the all-vanadium redox flow battery [J].
Al-Fetlawi, H. ;
Shah, A. A. ;
Walsh, F. C. .
ELECTROCHIMICA ACTA, 2009, 55 (01) :78-89
[4]   Nature inspired flow field designs for proton exchange membrane fuel cell [J].
Arvay, A. ;
French, J. ;
Wang, J. -C. ;
Peng, X. -H. ;
Kannan, A. M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (09) :3717-3726
[5]   Numerical Simulation and Experiment on the Electrolyte Flow Distribution for All Vanadium Redox Flow Battery [J].
Chen, Jin-qing ;
Wang, Bao-guo ;
Lv, Hong-ling .
APPLICATION OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 236-238 :604-+
[6]   Coupled effects of flow field geometry and diffusion media material structure on evaporative water removal from polymer electrolyte fuel cells [J].
Cho, Kyu Taek ;
Mench, Matthew M. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (22) :12329-12340
[7]   Measurement of Localized Current Distribution in a Vanadium Redox Flow Battery [J].
Clement, J. T. ;
Zawodzinski, T. A. ;
Mench, M. M. .
STATIONARY AND LARGE-SCALE ELECTRICAL ENERGY STORAGE SYSTEMS 3, 2014, 58 (37) :9-16
[8]   Sulfonated Poly(Ether Ether Ketone)/Graphene composite membrane for vanadium redox flow battery [J].
Dai, Wenjing ;
Yu, Lihong ;
Li, Zhaohua ;
Yan, Jia ;
Liu, Le ;
Xi, Jingyu ;
Qiu, Xinping .
ELECTROCHIMICA ACTA, 2014, 132 :200-207
[9]   The Influence of Electrode and Channel Configurations on Flow Battery Performance [J].
Darling, Robert M. ;
Perry, Mike L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) :A1381-A1387
[10]   Redox flow cells for energy conversion [J].
de Leon, C. Ponce ;
Frias-Ferrer, A. ;
Gonzalez-Garcia, J. ;
Szanto, D. A. ;
Walsh, F. C. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :716-732