DNA methylation-based age estimation in pediatric healthy tissues and brain tumors

被引:2
作者
Kling, Teresia [1 ]
Wenger, Anna [1 ]
Caren, Helena [1 ]
机构
[1] Univ Gothenburg, Sahlgrenska Ctr Canc Res, Dept Lab Med, Inst Biomed,Sahlgrenska Acad, Gothenburg, Sweden
来源
AGING-US | 2020年 / 12卷 / 21期
基金
瑞典研究理事会;
关键词
DNA methylation; children; epigenetic clock; methylation age; brain tumor; EPIGENETIC CLOCK; CLASSIFICATION; EXPRESSION; SUBGROUPS; ACVR1;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Several DNA methylation clocks have been developed to reflect chronological age of human tissues, but most clocks have been trained on adult samples. The rapid methylome changes in children and the role of epigenetics in pediatric tumors calls for tools accurately estimating methylation age in children. We aimed to evaluate seven methylation clocks in multiple tissues from healthy children to inform future studies on the optimal clock for pediatric cohorts, and analyzed the methylation age in brain tumors. We found that clocks trained on pediatric samples were the best in all tested tissues, highlighting the need for dedicated clocks. For blood samples, the Skin and blood clock had the best correlation with chronological age, while PedBE was the most accurate for saliva and buccal samples, and Horvath for brain tissue. Horvath methylation age was accelerated in pediatric brain tumors and the acceleration was subtype-specific for atypical teratoid rhabdoid tumor (ATRT), ependymoma, medulloblastoma and glioma. The subtypes with the highest acceleration corresponded to the worst prognostic categories in ATRT, ependymoma and glioma, whereas the relationship was reversed in medulloblastoma. This suggests that methylation age has potential as a prognostic biomarker in pediatric brain tumors and should be further explored.
引用
收藏
页码:21037 / 21056
页数:20
相关论文
共 50 条
[31]   DNA methylation-based age prediction from saliva: High age predictability by combination of 7 CpG markers [J].
Hong, Sae Rom ;
Jung, Sang-Eun ;
Lee, Eun Hee ;
Shin, Kyoung-Jin ;
Yang, Woo Ick ;
Lee, Hwan Young .
FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2017, 29 :118-125
[32]   DNA methylation-based biological aging and cancer risk and survival: Pooled analysis of seven prospective studies [J].
Dugue, Pierre-Antoine ;
Bassett, Julie K. ;
Joo, JiHoon E. ;
Jung, Chol-Hee ;
Wong, Ee Ming ;
Moreno-Betancur, Margarita ;
Schmidt, Daniel ;
Makalic, Enes ;
Li, Shuai ;
Severi, Gianluca ;
Hodge, Allison M. ;
Buchanan, Daniel D. ;
English, Dallas R. ;
Hopper, John L. ;
Southey, Melissa C. ;
Giles, Graham G. ;
Milne, Roger L. .
INTERNATIONAL JOURNAL OF CANCER, 2018, 142 (08) :1611-1619
[33]   A comparison of feature selection methodologies and learning algorithms in the development of a DNA methylation-based telomere length estimator [J].
Doherty, Trevor ;
Dempster, Emma ;
Hannon, Eilis ;
Mill, Jonathan ;
Poulton, Richie ;
Corcoran, David ;
Sugden, Karen ;
Williams, Ben ;
Caspi, Avshalom ;
Moffitt, Terrie E. ;
Delany, Sarah Jane ;
Murphy, Therese M. .
BMC BIOINFORMATICS, 2023, 24 (01)
[34]   The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells [J].
McEwen, Lisa M. ;
O'Donnell, Kieran J. ;
McGill, Megan G. ;
Edgar, Rachel D. ;
Jones, Meaghan J. ;
MacIsaac, Julia L. ;
Lin, David Tse Shen ;
Ramadori, Katia ;
Morin, Alexander ;
Gladish, Nicole ;
Garg, Elika ;
Unternaehrer, Eva ;
Pokhvisneva, Irina ;
Karnani, Neerja ;
Kee, Michelle Z. L. ;
Klengel, Torsten ;
Adler, Nancy E. ;
Barr, Ronald G. ;
Letourneau, Nicole ;
Giesbrecht, Gerald F. ;
Reynolds, James N. ;
Czamara, Darina ;
Armstrong, Jeffrey M. ;
Essex, Marilyn J. ;
de Weerth, Carolina ;
Beijers, Roseriet ;
Tollenaar, Marieke S. ;
Bradley, Bekh ;
Jovanovic, Tanja ;
Ressler, Kerry J. ;
Steiner, Meir ;
Entringer, Sonja ;
Wadhwa, Pathik D. ;
Buss, Claudia ;
Bush, Nicole R. ;
Binder, Elisabeth B. ;
Boyce, W. Thomas ;
Meaney, Michael J. ;
Horvath, Steve ;
Kobor, Michael S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (38) :23329-23335
[35]   A collaborative exercise on DNA methylation-based age prediction and body fluid typing [J].
Lee, Ji Eun ;
Lee, Jeong Min ;
Naue, Jana ;
Fleckhaus, Jan ;
Freire-Aradas, Ana ;
Neubauer, Jacqueline ;
Pospiech, Ewelina ;
McCord, Bruce ;
Kalamara, Vivian ;
Gauthier, Quentin ;
Mills, Carly ;
Cao, Yijian ;
Wang, Zheng ;
Oh, Yu Na ;
Feng, Lei ;
Schneider, Peter M. ;
Phillips, Christopher ;
Haas, Cordula ;
Pisarek, Aleksandra ;
Branicki, Wojciech ;
Podini, Daniele ;
Vidaki, Athina ;
Tejero, Nicole Fernandez ;
Ambroa-Conde, Adrian ;
Mosquera-Miguel, Ana ;
Lareu, Maria Victoria ;
Hou, Yiping ;
Lee, Joo Young ;
Lee, Hwan Young .
FORENSIC SCIENCE INTERNATIONAL-GENETICS, 2022, 57
[36]   DNA methylation-based predictors of health: applications and statistical considerations [J].
Yousefi, Paul D. ;
Suderman, Matthew ;
Langdon, Ryan ;
Whitehurst, Oliver ;
Smith, George Davey ;
Relton, Caroline L. .
NATURE REVIEWS GENETICS, 2022, 23 (06) :369-383
[37]   DNA methylation-based biomarkers in urological cancers [J].
Xu, Rong ;
Lin, Shaokun ;
Xin, Jun ;
Guo, Youhong ;
Zhang, Wenzhou ;
Lin, Yangjun ;
Xu, Rui'an .
Information Technology Journal, 2013, 12 (17) :4289-4297
[38]   Developing DNA methylation-based diagnostic biomarkers [J].
Hyerim Kim ;
Xudong Wang ;
Peng Jin .
JournalofGeneticsandGenomics, 2018, 45 (02) :87-97
[39]   DNA methylation-based subclassification of psoriasis in the Chinese Han population [J].
Zhou, Fusheng ;
Shen, Changbing ;
Hsu, Yi-Hsiang ;
Gao, Jing ;
Dou, Jinfa ;
Ko, Randy ;
Zheng, Xiaodong ;
Sun, Liangdan ;
Cui, Yong ;
Zhang, Xuejun .
FRONTIERS OF MEDICINE, 2018, 12 (06) :717-725
[40]   Developing DNA methylation-based diagnostic biomarkers [J].
Kim, Hyerim ;
Wang, Xudong ;
Jin, Peng .
JOURNAL OF GENETICS AND GENOMICS, 2018, 45 (02) :87-97