Numerical solution of Volterra-Fredholm integral equation via hyperbolic basis functions

被引:3
作者
Esmaeili, Hamid [1 ]
Rostami, Majid [1 ]
Hooshyarbakhsh, Vahideh [2 ]
机构
[1] Bu Ali Sina Univ, Dept Math, Hamadan, Hamadan, Iran
[2] Islamic Azad Univ, Young Researchers & Elite Club Hamedan Branch, Hamadan, Hamadan, Iran
关键词
block‐ pulse functions; hyperbolic basis functions; operational matrix; Volterra‐ Fredholm integral equation;
D O I
10.1002/jnm.2823
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a new method using hyperbolic basis functions is presented to solve second kind linear Volterra-Fredholm integral equation. In other words, our method approximates the solution of a Volterra-Fredholm integral equation by the hyperbolic basis functions, which produce block-pulse functions. Hence, the new method reduces the linear Volterra-Fredholm integral equation to a system of algebraic equations. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the new method.
引用
收藏
页数:11
相关论文
共 13 条
  • [1] Al-Jarrah Y., 2013, APPL MATH, V4, P204, DOI DOI 10.4236/AM.2013.41A031
  • [2] [Anonymous], 1985, COMPUTATIONAL METHOD
  • [3] Atkinson AE, 1998, INTRO NUMERICAL ANAL
  • [4] Atkinson AE, 1997, NUMERICAL SOLUTIONS
  • [5] A numerical method for solving a class of functional and two dimensional integral equations
    Babolian, E.
    Abbasbandy, S.
    Fattahzadeh, F.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 198 (01) : 35 - 43
  • [6] Numerical solution of Volterra-Fredholm integral equations by moving least square method and Chebyshev polynomials
    Dastjerdi, H. Laeli
    Ghaini, F. M. Maalek
    [J]. APPLIED MATHEMATICAL MODELLING, 2012, 36 (07) : 3277 - 3282
  • [7] Ezzati R, 2010, NUMERICAL SOLUTION V
  • [8] Majeed S.J., 2008, J AL NAHRIAN U, V11, P131
  • [9] Mirzaee F, 2017, COMPUT METHODS DIFFE, V5, P88
  • [10] Using operational matrix for solving nonlinear class of mixed Volterra-Fredholm integral equations
    Mirzaee, Farshid
    Hadadiyan, Elham
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (10) : 3433 - 3444