Laser Preheating for Hot Crack Reduction in Direct Metal Deposition of Inconel 738LC

被引:12
作者
Soffel, Fabian [1 ]
Papis, Konrad [1 ]
Bambach, Markus [2 ]
Wegener, Konrad [3 ]
机构
[1] Inspire AG, Technoparkstr 1, CH-8005 Zurich, Switzerland
[2] Swiss Fed Inst Technol, Adv Mfg Lab, Technoparkstr 1, CH-8005 Zurich, Switzerland
[3] Swiss Fed Inst Technol, Inst Machine Tools & Mfg, Leonhardstr 21, CH-8092 Zurich, Switzerland
关键词
additive manufacturing; direct metal deposition; preheating; isothermal welding; super alloy; Inconel; hot cracking; MICROSTRUCTURE; SUPERALLOY; LIQUATION; MECHANISM; BEHAVIOR; ALLOY; NITI;
D O I
10.3390/met12040614
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Welding of precipitation-hardenable nickel-based super alloys that contain large amounts of Al and Ti is challenging due to their high susceptibility to hot cracking. For metal additive manufacturing (AM) by powder bed fusion (PBF) or direct metal deposition (DMD), various welding process adjustments may prevent the formation of cracks. The aim of this study is the development and experimental characterization of a laser preheating process for DMD of Inconel 738LC. Metallographic cross-sections of multiple test specimens were analyzed to quantify the effect of initial substrate temperature, specimen geometry, deposition parameters, and scanning strategy on the resulting crack density. The results show that increased substrate temperature by laser preheating and reduced specimen size leads to crack-free deposited structures. Therefore, the proposed preheating process may be applied for part fabrication or repair by DMD to reduce or even completely prevent the risk of hot cracking.
引用
收藏
页数:11
相关论文
共 37 条
[1]   Influence of Laser Powder Bed Fusion Process Parameters on Voids, Cracks, and Microhardness of Nickel-Based Superalloy Alloy 247LC [J].
Adegoke, Olutayo ;
Andersson, Joel ;
Brodin, Hakan ;
Pederson, Robert .
MATERIALS, 2020, 13 (17)
[2]   Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting [J].
Chauvet, Edouard ;
Kontis, Paraskevas ;
Jaegle, Eric A. ;
Gault, Baptiste ;
Raabe, Dierk ;
Tassin, Catherine ;
Blandin, Jean-Jacques ;
Dendievel, Remy ;
Vayre, Benjamin ;
Abed, Stephane ;
Martin, Guilhem .
ACTA MATERIALIA, 2018, 142 :82-94
[3]   Liquation Cracking in the Heat-Affected Zone of IN738 Superalloy Weld [J].
Chen, Kai-Cheng ;
Chen, Tai-Cheng ;
Shiue, Ren-Kae ;
Tsay, Leu-Wen .
METALS, 2018, 8 (06)
[4]   Induction-assisted laser welding of IN-738 nickel-base superalloy [J].
Chiang, M. F. ;
Chen, C. .
MATERIALS CHEMISTRY AND PHYSICS, 2009, 114 (01) :415-419
[5]   Investigations on the microstructure and crack formation of IN738LC samples processed by selective laser melting using Gaussian and doughnut profiles [J].
Cloots, Michael ;
Uggowitzer, Peter J. ;
Wegener, Konrad .
MATERIALS & DESIGN, 2016, 89 :770-784
[6]   Latest Developments in Industrial Hybrid Machine Tools that Combine Additive and Subtractive Operations [J].
Cortina, Magdalena ;
Inaki Arrizubieta, Jon ;
Exequiel Ruiz, Jose ;
Ukar, Eneko ;
Lamikiz, Aitzol .
MATERIALS, 2018, 11 (12)
[7]   Scientific, technological and economic issues in metal printing and their solutions [J].
DebRoy, T. ;
Mukherjee, T. ;
Milewski, J. O. ;
Elmer, J. W. ;
Ribic, B. ;
Blecher, J. J. ;
Zhang, W. .
NATURE MATERIALS, 2019, 18 (10) :1026-1032
[8]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[9]   Fabrication of NiTi through additive manufacturing: A review [J].
Elahinia, Mohammad ;
Moghaddam, Narges Shayesteh ;
Andani, Mohsen Taheri ;
Amerinatanzi, Amirhesam ;
Bimber, Beth A. ;
Hamilton, Reginald F. .
PROGRESS IN MATERIALS SCIENCE, 2016, 83 :630-663
[10]   Processability of different IN738LC powder batches by selective laser melting [J].
Engeli, Roman ;
Etter, Thomas ;
Hoevel, Simone ;
Wegener, Konrad .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 229 :484-491