Stretching polysaccharides on live cells using single molecule force spectroscopy

被引:82
作者
Francius, Gregory [1 ]
Alsteens, David [1 ]
Dupres, Vincent [1 ]
Lebeer, Sarah [2 ,3 ]
De Keersmaecker, Sigrid [2 ,3 ]
Vanderleyden, Jos [2 ,3 ]
Gruber, Hermann J. [4 ]
Dufrene, Yves F. [1 ]
机构
[1] Catholic Univ Louvain, Unite Chim Interfaces, B-3000 Louvain, Belgium
[2] Katholieke Univ Leuven, Ctr Microbial & Plant Genet, Louvain, Belgium
[3] Katholieke Univ Leuven, INPAC, Louvain, Belgium
[4] Johannes Kepler Univ Linz, Inst Biophys, A-4040 Linz, Austria
关键词
RECOGNITION EVENTS; MICROBIAL-CELLS; MICROSCOPY; SURFACE; LOCALIZATION; ELASTICITY; PROTEIN; PILI; POLYMERS; BACTERIA;
D O I
10.1038/nprot.2009.65
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The knowledge of molecular mechanisms underlying the adhesive and mechanical properties of cell surface-associated molecules is a key to understanding their functions. In this context, single-molecule force spectroscopy (SMFS) has recently offered new opportunities for probing the adhesion and mechanics of polysaccharides and proteins on live cells. Here we present a protocol that we have used to analyze polysaccharide chains of different nature on the bacterium Lactobacillus rhamnosus GG. We describe procedures (i) for functionalizing atomic force microscopy (AFM) tips with Pseudomonas aeruginosa-I or concanavalin A lectins, (ii) for stretching specific polysaccharide molecules on live bacteria using SMFS with lectin tips and (iii) for mapping the localization, adhesion and extension of individual polysaccharide chains. We also discuss data treatment, emphasizing how to gain insight into the elasticity of the stretched macromolecules using the extended freely jointed chain model. Even though the presented protocol is for L. rhamnosus, it can be easily modified for other cell types. For users having expertise in the field, the entire protocol can be completed in about 5 d.
引用
收藏
页码:939 / 946
页数:8
相关论文
共 38 条
[1]   Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy [J].
Abu-Lail, NI ;
Camesano, TA .
LANGMUIR, 2002, 18 (10) :4071-4081
[2]   Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM [J].
Alsteens, David ;
Dupres, Vincent ;
Mc Evoy, Kevin ;
Wildling, Linda ;
Gruber, Hermann J. ;
Dufrene, Yves F. .
NANOTECHNOLOGY, 2008, 19 (38)
[3]   Grabbing the cat by the tail: manipulating molecules one by one [J].
Bustamante C. ;
Macosko J.C. ;
Wuite G.J.L. .
Nature Reviews Molecular Cell Biology, 2000, 1 (2) :130-136
[4]   Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques [J].
Camesano, Terri A. ;
Liu, Yatao ;
Datta, Meera .
ADVANCES IN WATER RESOURCES, 2007, 30 (6-7) :1470-1491
[5]   Polyprotein of GB1 is an ideal artificial elastomeric protein [J].
Cao, Yi ;
Li, Hongbin .
NATURE MATERIALS, 2007, 6 (02) :109-114
[6]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322
[7]   Combined use of atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectrometry for cell surface analysis [J].
Dague, Etienne ;
Delcorte, Arnaud ;
Latge, Jean-Paul ;
Dufrene, Yves F. .
LANGMUIR, 2008, 24 (07) :2955-2959
[8]   Towards nanomicrobiology using atomic force microscopy [J].
Dufrene, Yves F. .
NATURE REVIEWS MICROBIOLOGY, 2008, 6 (09) :674-680
[9]   Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins [J].
Dugdale, TM ;
Dagastine, R ;
Chiovitti, A ;
Mulvaney, P ;
Wetherbee, R .
BIOPHYSICAL JOURNAL, 2005, 89 (06) :4252-4260
[10]   Nanoscale mapping and functional analysis of individual adhesins on living bacteria [J].
Dupres, V ;
Menozzi, FD ;
Locht, C ;
Clare, BH ;
Abbott, NL ;
Cuenot, S ;
Bompard, C ;
Raze, D ;
Dufrêne, YF .
NATURE METHODS, 2005, 2 (07) :515-520