Multibump solutions to possibly degenerate equilibria for almost periodic Lagrangian systems

被引:11
作者
Alessio, F
Bertotti, ML
Montecchiari, P
机构
[1] Univ Naples Federico II, Dipartimento Matemat R Caccioppoli, I-80126 Naples, Italy
[2] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
[3] Univ Trent, Dipartimento Ingn Meccan & Strutturale, I-38050 Trento, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1999年 / 50卷 / 06期
关键词
Lagrangian systems; homoclinic; heteroclinic; multibump solutions; almost periodicity; variational methods;
D O I
10.1007/s000330050184
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study via variational methods some chaotic features of a class of almost periodic Lagrangian systems on a torus. In particular we show that slowly oscillating perturbations of such systems admit a multibump dynamics relative to possibly degenerate equilibria. Mathematics Subject Classification (1991). 34C37, 58F05. 70H35.
引用
收藏
页码:860 / 891
页数:32
相关论文
共 43 条
[1]   Genericity of the multibump dynamics for almost periodic Duffing-like systems [J].
Alessio, F ;
Caldiroli, P ;
Montecchiari, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :885-901
[2]  
Ambrosetti A, 1996, CR ACAD SCI I-MATH, V323, P753
[3]  
[Anonymous], 1994, COMM APPL NONLINEAR
[4]   A VARIATIONAL PROOF OF A SITNIKOV-LIKE THEOREM [J].
BESSI, U .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (11) :1303-1318
[5]   GLOBAL HOMOCLINIC BIFURCATION FOR DAMPED SYSTEMS [J].
BESSI, U .
MATHEMATISCHE ZEITSCHRIFT, 1995, 218 (03) :387-415
[6]   Multibump orbits near the anti-integrable limit for Lagrangian systems [J].
Bolotin, S ;
MacKay, R .
NONLINEARITY, 1997, 10 (05) :1015-1029
[7]  
Bolotin S., 1978, VESTNIK MOSKOV U 1, V6, P72
[8]  
Bolotin S. V., 1978, Prikladnaya Matematika i Mekhanika, V42, P245
[9]  
Buffoni B, 1996, COMMUN PUR APPL MATH, V49, P285, DOI 10.1002/(SICI)1097-0312(199603)49:3<285::AID-CPA3>3.3.CO
[10]  
2-#