Quantum computing on encrypted data

被引:121
作者
Fisher, K. A. G. [1 ,2 ]
Broadbent, A. [1 ,3 ]
Shalm, L. K. [1 ,4 ]
Yan, Z. [1 ,5 ]
Lavoie, J. [1 ,2 ]
Prevedel, R. [1 ,6 ]
Jennewein, T. [1 ,2 ]
Resch, K. J. [1 ,2 ]
机构
[1] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
[3] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[4] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[5] Macquarie Univ, Dept Phys & Astron, MQ Photon Res Ctr, Ctr Ultrahigh Bandwidth Devices Opt Syst CUDOS, Sydney, NSW 2109, Australia
[6] Max F Perutz Labs GmbH, Res Inst Mol Pathol, A-1030 Vienna, Austria
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1038/ncomms4074
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The ability to perform computations on encrypted data is a powerful tool for protecting privacy. Recently, protocols to achieve this on classical computing systems have been found. Here, we present an efficient solution to the quantum analogue of this problem that enables arbitrary quantum computations to be carried out on encrypted quantum data. We prove that an untrusted server can implement a universal set of quantum gates on encrypted quantum bits (qubits) without learning any information about the inputs, while the client, knowing the decryption key, can easily decrypt the results of the computation. We experimentally demonstrate, using single photons and linear optics, the encryption and decryption scheme on a set of gates sufficient for arbitrary quantum computations. As our protocol requires few extra resources compared with other schemes it can be easily incorporated into the design of future quantum servers. These results will play a key role in enabling the development of secure distributed quantum systems.
引用
收藏
页数:7
相关论文
共 30 条
[1]   Private quantum channels [J].
Ambainis, A ;
Mosca, M ;
Tapp, A ;
de Wolf, R .
41ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2000, :547-553
[2]   Demonstration of Blind Quantum Computing [J].
Barz, Stefanie ;
Kashefi, Elham ;
Broadbent, Anne ;
Fitzsimons, Joseph F. ;
Zeilinger, Anton ;
Walther, Philip .
SCIENCE, 2012, 335 (6066) :303-308
[3]  
Ben-Or M., 2010, Innovations in computer science (ICS), P453
[4]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[5]  
Broadbent A, 2013, LECT NOTES COMPUT SC, V8043, P344, DOI 10.1007/978-3-642-40084-1_20
[6]   Universal Blind Quantum Computation [J].
Broadbent, Anne ;
Fitzsimons, Joseph ;
Kashefi, Elham .
2009 50TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE: FOCS 2009, PROCEEDINGS, 2009, :517-526
[7]   Unified derivations of measurement-based schemes for quantum computation [J].
Childs, AM ;
Leung, DW ;
Nielsen, MA .
PHYSICAL REVIEW A, 2005, 71 (03)
[8]  
Childs AM, 2005, QUANTUM INF COMPUT, V5, P456
[9]   Randomized Benchmarking and Process Tomography for Gate Errors in a Solid-State Qubit [J].
Chow, J. M. ;
Gambetta, J. M. ;
Tornberg, L. ;
Koch, Jens ;
Bishop, Lev S. ;
Houck, A. A. ;
Johnson, B. R. ;
Frunzio, L. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2009, 102 (09)
[10]   RAPID SOLUTION OF PROBLEMS BY QUANTUM COMPUTATION [J].
DEUTSCH, D ;
JOZSA, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1992, 439 (1907) :553-558