Commutators of the fractional maximal function on variable exponent Lebesgue spaces

被引:46
|
作者
Zhang, Pu [1 ]
Wu, Jianglong [1 ]
机构
[1] Mudanjiang Normal Univ, Dept Math, Mudanjiang 157011, Peoples R China
基金
中国国家自然科学基金;
关键词
commutator; BMO; fractional maximal function; variable exponent Lebesgue space; SINGULAR-INTEGRALS; BOUNDEDNESS; OPERATORS;
D O I
10.1007/s10587-014-0093-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be the fractional maximal function. The commutator generated by and a suitable function b is defined by . Denote by P(a"e (n) ) the set of all measurable functions p(center dot): a"e (n) -> [1,a) such that 1 < p- := ess inf x is an element of R-n p(x) and p+ := ess sup x is an element of R-n p(x) < infinity. and by B(a"e (n) ) the set of all p(center dot) a P(a"e (n) ) such that the Hardy-Littlewood maximal function M is bounded on L (p(center dot))(a"e (n) ). In this paper, the authors give some characterizations of b for which is bounded from L (p(center dot))(a"e (n) ) into L (q(center dot))(a"e (n) ), when p(center dot) a P(a"e (n) ), 0 < beta < n/p (+) and 1/q(center dot) = 1/p(center dot) - beta/n with q(center dot)(n - beta)/ b is an element of B (R-n).
引用
收藏
页码:183 / 197
页数:15
相关论文
共 50 条