Darboux and Backlund transformations for the nonisospectral KP equation

被引:31
作者
Deng, Shu-Fang [1 ]
Qin, Zhen-Yun [1 ]
机构
[1] Fudan Univ, Inst Math, Shanghai 200433, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
nonisospectral KP equation; Darboux transformation; Backlund transformation; Wronskian technique;
D O I
10.1016/j.physleta.2006.04.081
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Darboux transformation and Backlund transformation in bilinear form for the nonisospectral KP equation are first investigated. Corresponding solutions are derived by using the Backlund transformation in bilinear form. It has been shown that these transformations are auto-Backlund transformations for isospectral problems while not for nonisospectral ones. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:467 / 474
页数:8
相关论文
共 16 条
[1]   LINE SOLITON-INTERACTIONS OF A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KADOMTSEV-PETVIASHVILI EQUATION [J].
CHAN, WL ;
LI, KS ;
LI, YS .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (11) :3759-3773
[2]   SOLUTONS OF A NONISOSPECTRAL AND VARIABLE-COEFFICIENT KORTEWEG DE VRIES EQUATION [J].
CHAN, WL ;
ZHENG, YK .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 14 (04) :293-301
[3]   NONPROPAGATING SOLITONS OF THE VARIABLE-COEFFICIENT AND NONISOSPECTRAL KORTEWEG-DEVRIES EQUATION [J].
CHAN, WL ;
LI, KS .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (11) :2521-2527
[4]   Lie algebraic structures of some (1+2)-dimensional Lax integrable systems [J].
Chen, DY ;
Xin, HW ;
Zhang, DJ .
CHAOS SOLITONS & FRACTALS, 2003, 15 (04) :761-770
[5]  
DAVID D, 1987, STUD APPL MATH, V76, P33
[6]   Exact solutions for the nonisospectral Kadomtshev-Petviashvili equation [J].
Deng, SF ;
Zhang, DJ ;
Chen, DY .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (09) :2383-2385
[7]  
Deng SF, 2005, COMMUN THEOR PHYS, V43, P961
[8]   The multisoliton solutions of the KP equation with self-consistent sources [J].
Deng, SF ;
Chen, DY ;
Zhang, DJ .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (09) :2184-2192
[9]  
Fan En-Gui, 1998, Acta Physica Sinica (Overseas Edition), V7, P649, DOI 10.1088/1004-423X/7/9/002
[10]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3