Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review

被引:180
|
作者
Jogawat, Abhimanyu [1 ]
Yadav, Bindu [2 ]
Chhaya [3 ]
Lakra, Nita [4 ]
Singh, Amit Kumar [5 ]
Narayan, Om Prakash [6 ]
机构
[1] Natl Inst Plant Genome Res, New Delhi, India
[2] Jawaharlal Nehru Univ, Sch Environm Sci, New Delhi, India
[3] Indian Inst Technol, Dept Civil & Environm Engn, Patna, Bihar, India
[4] Chaudhary Charan Singh Haryana Agr Univ, Dept Biotechnol, Hisar, Haryana, India
[5] Tel Aviv Univ, Sch Plant Sci & Food Secur, Tel Aviv, Israel
[6] Tufts Univ, Biomed Engn Dept, Medford, MA 02155 USA
关键词
TOMATO LYCOPERSICON-ESCULENTUM; TRANSCRIPTION FACTOR GENE; GENOME-WIDE ASSOCIATION; ZEATIN-TYPE CYTOKININS; TRITICUM-AESTIVUM L; ABSCISIC-ACID; ABIOTIC STRESS; SALICYLIC-ACID; JASMONIC ACID; WATER-STRESS;
D O I
10.1111/ppl.13328
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.
引用
收藏
页码:1106 / 1132
页数:27
相关论文
共 50 条
  • [21] Response of Carbon and Nitrogen Metabolism and Secondary Metabolites to Drought Stress and Salt Stress in Plants
    Cui, Gaochang
    Zhang, Yu
    Zhang, Wenjin
    Lang, Duoyong
    Zhang, Xiaojia
    Li, Zhixian
    Zhang, Xinhui
    JOURNAL OF PLANT BIOLOGY, 2019, 62 (06) : 387 - 399
  • [22] Role of phytohormones in regulating cold stress tolerance: Physiological and molecular approaches for developing cold-smart crop plants
    Raza, Ali
    Charagh, Sidra
    Najafi-Kakavand, Shiva
    Abbas, Saghir
    Shoaib, Yasira
    Anwar, Sultana
    Sharifi, Sara
    Lu, Guangyuan
    Siddique, Kadambot H. M.
    PLANT STRESS, 2023, 8
  • [23] Phytohormones: Key players in the modulation of heavy metal stress tolerance in plants
    Saini, Shivani
    Kaur, Navdeep
    Pati, Pratap Kumar
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2021, 223
  • [24] Phytohormone signaling and crosstalk in regulating drought stress response in plants
    Salvi, Prafull
    Manna, Mrinalini
    Kaur, Harmeet
    Thakur, Tanika
    Gandass, Nishu
    Bhatt, Deepesh
    Muthamilarasan, Mehanathan
    PLANT CELL REPORTS, 2021, 40 (08) : 1305 - 1329
  • [25] Silicon nanoparticles in higher plants: Uptake, action, stress tolerance, and crosstalk with phytohormones, antioxidants, and other signalling molecules
    Mukarram, Mohammad
    Petrik, Peter
    Mushtaq, Zeenat
    Khan, M. Masroor A.
    Gulfishan, Mohd
    Lux, Alexander
    ENVIRONMENTAL POLLUTION, 2022, 310
  • [26] Crosstalk between phytohormones and pesticides: Insights into unravelling the crucial roles of plant growth regulators in improving crop resilience to pesticide stress
    Shahid, Mohammad
    Shafi, Zaryab
    Ilyas, Talat
    Singh, Udai B.
    Pichtel, John
    SCIENTIA HORTICULTURAE, 2024, 338
  • [27] Role of phytohormones in heavy metal tolerance in plants: A review
    Rahman, Shafeeq Ur
    Li, Yanliang
    Hussain, Sajjad
    Hussain, Babar
    Khan, Waqas-ud-Din
    Riaz, Luqman
    Ashraf, Muhammad Nadeem
    Khaliq, Muhammad Athar
    Du, Zhenjie
    Cheng, Hefa
    ECOLOGICAL INDICATORS, 2023, 146
  • [28] Alleviation of Drought Stress by Plant Growth-Promoting Rhizobacteria (PGPR) in Crop Plants: A Review
    Harkhani, Khyati
    Sharma, Anish Kumar
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2024, 55 (05) : 735 - 758
  • [29] Approaches for the amelioration of adverse effects of drought stress on crop plants
    Dubey, Anamika
    Kumar, Ashwani
    Malla, Muneer Ahmad
    Chowdhary, Kanika
    Singh, Garima
    Ravikanth, Gudasalamani
    Harish
    Sharma, Satyawati
    Saati-Santamaria, Zaki
    Menendez, Esther
    Dames, Joanna Felicity
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2021, 26 (10): : 928 - 947
  • [30] Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones
    Hu, Yanru
    Jiang, Yanjuan
    Han, Xiao
    Wang, Houping
    Pan, Jinjing
    Yu, Diqiu
    JOURNAL OF EXPERIMENTAL BOTANY, 2017, 68 (06) : 1361 - 1369