Gδ-points in remainders of topological groups and some addition theorems in compacta

被引:4
作者
Arhangel'skii, A. V. [1 ]
机构
[1] Ohio Univ, Athens, OH 45701 USA
关键词
Ultrafilter; Bisequential space; G(delta)-point; Pseudocharacter; Topological group; Dyadic compactum; pi-Base; Pseudocompact space; Lindelof space; First countable; Compactification; Remainder; Ulam non-measurable cardinal;
D O I
10.1016/j.topol.2009.03.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we establish some connections between properties of a topological space X and the structure of convergence at G(delta)-points in an arbitrary remainder of this space X. A special attention is given to the case when X is a topological group. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2013 / 2018
页数:6
相关论文
共 11 条
[1]   More on remainders close to metrizable spaces [J].
Arhangel'skii, A. V. .
TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (06) :1084-1088
[2]  
Arhangel'skii AV, 2008, COMMENT MATH UNIV CA, V49, P119
[3]   Remainders in compactifications and generalized metrizability properties [J].
Arhangel'skii, AV .
TOPOLOGY AND ITS APPLICATIONS, 2005, 150 (1-3) :79-90
[4]  
Arhangelskii A., 2008, Topological Groups and Related Structures
[5]  
Arhangelskii A.V., 1970, Am. Math. Soc. Transl, V92, P1
[6]  
Arhangelskii A.V., 1984, Fundamentals of General Topology: Problems and Exercises
[7]  
Arhangelskii A.V, 1994, T MOSC MATH SOC, V55, P207
[8]  
ARHANGELSKII AV, 1980, RUSS MATH SURV, V35, P1
[9]  
Engelking R., 1977, General Topology, V2nd
[10]   SOME PROPERTIES OF COMPACTIFICATIONS [J].
HENRIKSEN, M ;
ISBELL, JR .
DUKE MATHEMATICAL JOURNAL, 1958, 25 (01) :83-105