Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy

被引:122
|
作者
Zhan, Qi [1 ]
Yi, Kaikai [2 ]
Qi, Hongzhao [3 ]
Li, Sidi [1 ]
Li, Xueping [1 ]
Wang, Qixue [2 ]
Wang, Yunfei [2 ]
Liu, Chaoyong [2 ]
Qiu, Mingzhe [2 ]
Yuan, Xubo [1 ]
Zhao, Jin [1 ]
Hou, Xin [1 ]
Kang, Chunsheng [2 ]
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin Key Lab Composite & Funct Mat, Tianjin 300072, Peoples R China
[2] Tianjin Med Univ, Key Lab Postneurotrauma Neurorepair & Regenerat C, Minist Educ & Tianjin City,Gen Hosp, Dept Neurosurg,Tianjin Neurol Inst,Lab Neurooncol, Tianjin 300052, Peoples R China
[3] Qingdao Univ, Inst Translat Med, Qingdao 266021, Peoples R China
来源
THERANOSTICS | 2020年 / 10卷 / 17期
基金
中国国家自然科学基金;
关键词
exosome; co-loading; tumor targeting; efficient transfection; combination therapy; EXTRACELLULAR VESICLES; CANCER; DELIVERY; NANOMATERIALS; NANOMEDICINE; MICRORNA-21; BARRIERS; RELEASE; POLYMER; SIRNA;
D O I
10.7150/thno.45028
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Rationale: Developing an effective nanoplatform to realize 'multi-in-one' is essential to broaden the therapeutic potential of combination therapy. Exosomes are ideal candidates since their intrinsic abilities of integrating multiple contents and functions. However, only limited efforts have been devoted to engineering exosomes to integrate the needed properties, also considering the safety and yield, for tumor-targeted and efficient gene/chemo combination therapy. Methods: Herein, by manipulating the exosome membrane, blood exosomes with high abundance and safety are engineered as a versatile combinatorial delivery system, where the doxorubicin (Dox) and cholesterol-modified miRNA21 inhibitor (miR-21i) are co-embedded into the lipid bilayer of exosomes, and the magnetic molecules and endosomolytic peptides L17E are bind to the exosome membrane through ligand-receptor coupling and electrostatic interactions, respectively. Results: It is proved that such engineering strategy not only preserves their intrinsic features, but also readily integrates multiple properties of tumor targeting, efficient transfection and gene/chemo combination therapy into blood exosomes. The lipid bilayer structure of exosomes allows them to co-load Dox and miR-21i with high-payloads. Moreover, profiting from the integration of magnetic molecules and L17E peptides, the engineered exosomes exhibit an enhanced tumor accumulation and an improved endosome escape ability, thereby specifically and efficiently delivering encapsulated cargos to tumor cells. As a result, a remarkable inhibition of tumor growth is observed in the tumor-bearing mice, and without noticeable side effects. Conclusions: This study demonstrates the potential of engineered blood exosomes as feasible co-delivery nanosystem for tumor-targeted and efficient combination therapy. Further development by replacing the drugs combined regimens can potentially make this engineered exosome become a general platform for the design of safe and effective combination therapy modality.
引用
收藏
页码:7889 / 7905
页数:17
相关论文
共 50 条
  • [31] GSH-Responsive Prodrug Nanoassembly as a Carrier-Free Nanoplatform for Tumor-Targeting Delivery and Chemo-Photothermal Therapy
    Tian, Baocheng
    Xu, Hong
    Wang, Haiyan
    Li, Keke
    Zheng, Shuna
    Hu, Senhao
    Wang, Yongjun
    Lv, Qingzhi
    MOLECULAR PHARMACEUTICS, 2023, 20 (08) : 4210 - 4218
  • [32] Systemic and efficient siRNA delivery through tumor-targeting polymeric nanoparticles
    Soo, Patrick Lim
    Hwang, Jungyeon
    Peters, Christian
    Kabir, Sujan
    Swerdya-Krawiec, Beata
    Case, Roy I.
    Shum, Pochi
    Cole, Rod
    Lazarus, Douglas
    Eliasof, Scott
    Svenson, Sonke
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [33] Tumor-targeting of viral vectors for cancer gene therapy by using antibodies or their genes against tumor-associated antigens
    Kuroki, M
    Kuroki, M
    Shibaguchi, H
    Hachimine, K
    Kinugasa, T
    Badran, A
    ANTICANCER RESEARCH, 2004, 24 (5C) : 3373 - 3377
  • [34] Active tumor-targeting luminescent gold clusters with efficient urinary excretion
    Wang, Xiaojuan
    He, Hua
    Wang, Yanan
    Wang, Junying
    Sun, Xing
    Xu, Hai
    Nau, Werner M.
    Zhang, Xiaodong
    Huang, Fang
    CHEMICAL COMMUNICATIONS, 2016, 52 (59) : 9232 - 9235
  • [35] CANCER TREATMENT/PHOTODYNAMIC THERAPY Depth no barrier for tumor-targeting light therapy
    不详
    LASER FOCUS WORLD, 2015, 51 (05): : 65 - 65
  • [36] Tumor-targeting nanodelivery systems: Expanding the potential for cancer therapy and diagnosis
    Chang, EH
    ONCOLOGY RESEARCH, 2006, 15 (10-12) : 463 - 463
  • [38] Tumor-Targeting CaO2-Based Nanoparticles for Cancer Therapy
    Liu, Huan
    Ai, Ronger
    Liu, Bizhi
    Cao, Xiang
    He, Li
    ACS APPLIED NANO MATERIALS, 2024, 7 (22) : 26276 - 26286
  • [39] Hyaluronic Acid-Modified Gold-Polydopamine Complex Nanomedicine for Tumor-Targeting Drug Delivery and Chemo-Photothermal-Therapy Synergistic Therapy
    Wang, Tao
    Niu, Kang
    Ni, Song
    Zhang, Weidong
    Liu, Zhiwei
    Zhang, Xuwu
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (04) : 1585 - 1594
  • [40] Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy
    Li, Ke
    Qiu, Ling
    Liu, Qingzhu
    Lv, Gaochao
    Zhao, Xueyu
    Wang, Shanshan
    Lin, Jianguo
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2017, 174 : 243 - 250