Bifurcations in Delay Differential Equations: An Algorithmic Approach in Frequency Domain

被引:0
|
作者
Bel, A. [1 ]
Reartes, W. [1 ]
Torresi, A. [1 ]
机构
[1] Univ Nacl Sur, Dept Matemat, CONICET, Av Alem 1254, RA-8000 Bahia Blanca, Buenos Aires, Argentina
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2016年 / 26卷 / 14期
关键词
Delay differential equations; frequency domain method; bifurcations of periodic solutions; HOPF-BIFURCATION;
D O I
10.1142/S0218127416502382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we study local oscillations in delay differential equations with a frequency domain methodology. The main result is a bifurcation equation from which the existence and expressions of local periodic solutions can be determined. We present an iterative method to obtain the bifurcation equation up to a fixed arbitrary order. It is shown how this method can be implemented in symbolic math programs.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Approach to study of bifurcations and stability of integro-differential equations
    Domoshnitsky, A
    Goltser, YM
    MATHEMATICAL AND COMPUTER MODELLING, 2002, 36 (06) : 663 - 678
  • [22] Controlling bifurcations in maps via a frequency-domain approach
    D'Amico, MB
    Moiola, JL
    Paolini, EE
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2003, 10 (06): : 781 - 798
  • [23] A frequency-domain approach to bifurcations in control systems with saturation
    Aracil, J
    Ponce, E
    Alamo, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (10) : 1261 - 1271
  • [24] Bifurcations for A Single Mode Laser Model with Time Delay in Frequency Domain Methods
    Xu, Changjin
    Li, Peiluan
    JOURNAL OF COMPUTERS, 2012, 7 (08) : 1825 - 1830
  • [25] Hamiltonian approach to delay ordinary differential equations
    Dorodnitsyn, Vladimir
    Kozlov, Roman
    Meleshko, Sergey
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2025, 58 (02)
  • [26] Bifurcations of implicit differential equations
    Bruce, JW
    Fletcher, GJ
    Tari, F
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2000, 130 : 485 - 506
  • [27] GLOBAL HOPF BIFURCATIONS OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH STATE-DEPENDENT DELAY
    Sun, Xiuli
    Yuan, Rong
    Lv, Yunfei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2018, 23 (02): : 667 - 700
  • [28] Symmetry breaking, bifurcations, periodicity and chaos in the Euler method for a class of delay differential equations
    Peng, MS
    CHAOS SOLITONS & FRACTALS, 2005, 24 (05) : 1287 - 1297
  • [29] Switching to Nonhyperbolic Cycles from Codimension Two Bifurcations of Equilibria of Delay Differential Equations
    Bosschaert, Maikel M.
    Janssens, Sebastiaan G.
    Kuznetsov, Yu A.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01): : 252 - 303
  • [30] Basins of attraction and paired Hopf bifurcations for delay differential equations with bistable nonlinearity and delay-dependent coefficient
    Lin, Genghong
    Wang, Lin
    Yu, Jianshe
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 354 : 183 - 206