Permutation inference distribution for linear regression and related models

被引:1
|
作者
Wu, Qiang [1 ]
Vos, Paul [1 ]
机构
[1] East Carolina Univ, Dept Biostat, Greenville, NC 27858 USA
关键词
Confidence bias; confidence error; confidence interval; linear regression; permutation inference; CONFIDENCE-INTERVALS; RANDOMIZATION TESTS; P-VALUES;
D O I
10.1080/10485252.2019.1632306
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For linear regression and related models, a permutation inference distribution (PID) is introduced. Like the confidence distribution in the Bayesian/Fiducial/Frequentist inference framework, the PID allows the construction of both confidence intervals and p-values. For two-sample problems and pairwise comparisons in ANOVA models, a fast Fourier transformation method can be used to find the exact PID. In general, however, random permutations are required except for small samples where all permutations can be generated. Simulation studies and real data applications are used to evaluate inferences obtained from the PID. PID methods are close to standard parametric methods when the errors are iid and normal. For skewed and heavy tailed errors, PID methods are superior to bootstrap and standard parametric methods.
引用
收藏
页码:722 / 742
页数:21
相关论文
共 50 条
  • [31] Calibration intervals in linear regression models
    Ng, K. H.
    Pooi, A. H.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (11) : 1688 - 1696
  • [32] On randomizing estimators in linear regression models
    Ermakov, S
    Schwabe, R
    ADVANCES IN STOCHASTIC SIMULATION METHODS, 2000, : 305 - 314
  • [33] INFERENCE FOR CENSORED QUANTILE REGRESSION MODELS IN LONGITUDINAL STUDIES
    Wang, Huixia Judy
    Fygenson, Mendel
    ANNALS OF STATISTICS, 2009, 37 (02) : 756 - 781
  • [34] High Dimensional Inference in Partially Linear Models
    Zhu, Ying
    Yu, Zhuqing
    Cheng, Guang
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [35] Selective inference for additive and linear mixed models
    Rugamer, David
    Baumann, Philipp F. M.
    Greven, Sonja
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2022, 167
  • [36] Testing fuzzy linear hypotheses in linear regression models
    Bernhard F. Arnold
    Oke Gerke
    Metrika, 2003, 57 : 81 - 95
  • [37] Testing fuzzy linear hypotheses in linear regression models
    Arnold, BF
    Gerke, O
    METRIKA, 2003, 57 (01) : 81 - 95
  • [38] PROJECTION-BASED INFERENCE FOR HIGH-DIMENSIONAL LINEAR MODELS
    Yi, Sangyoon
    Zhang, Xianyang
    STATISTICA SINICA, 2022, 32 (02) : 915 - 937
  • [39] CALIBRATED PERCENTILE DOUBLE BOOTSTRAP FOR ROBUST LINEAR REGRESSION INFERENCE
    McCarthy, Daniel
    Zhang, Kai
    Brown, Lawrence D.
    Berk, Richard
    Buja, Andreas
    George, Edward, I
    Zhao, Linda
    STATISTICA SINICA, 2018, 28 (04) : 2565 - 2589