机构:
Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Forte, Giuseppe
[1
]
Cecconi, Fabio
论文数: 0引用数: 0
h-index: 0
机构:
UOS Sapienza, CNR, ISC, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Cecconi, Fabio
[2
]
Vulpiani, Angelo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
UOS Sapienza, CNR, ISC, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Vulpiani, Angelo
[1
,2
]
机构:
[1] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
Through the analysis of unbiased random walks on fractal trees and continuous time random walks, we show that even if a process is characterized by a mean square displacement (MSD) growing linearly with time (standard behaviour) its diffusion properties can be not trivial. In particular, we show that the following scenarios are consistent with a linear increase of MSD with time: (i) the high-order moments, <x(t)(q)> for q > 2 and the probability density of the process exhibit multiscaling; (ii) the random walk on certain fractal graphs, with non integer spectral dimension, can display a fully standard diffusion; (iii) positive order moments satisfying standard scaling does not imply an exact scaling property of the probability density.