Role of PKD2 in the endoplasmic reticulum calcium homeostasis

被引:5
|
作者
Liu, Xiong [1 ]
Tang, Jingfeng [2 ]
Chen, Xing-Zhen [1 ]
机构
[1] Univ Alberta, Fac Med & Dent, Dept Physiol, Membrane Prot Dis Res Grp, Edmonton, AB, Canada
[2] Hubei Univ Technol, Natl Ctr Cellular Regulat & Mol Pharmaceut 111, Wuhan, HB, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
ADPKD; autosomal dominant polycystic kidney disease; TRPP2; channel; ER stress; PKD2 interacting partner; ER Ca release channel; ACTIVATES CRAC CHANNELS; CATION CHANNEL; RYANODINE RECEPTOR; CA2+ HOMEOSTASIS; POLYCYSTIN-L; DISEASE; RELEASE; STIM1; PHOSPHORYLATION; EXPRESSION;
D O I
10.3389/fphys.2022.962571
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in the PKD1 or PKD2 gene which encodes membrane receptor PKD1 and cation channel PKD2, respectively. PKD2, also called transient receptor potential polycystin-2 (TRPP2), is a Ca2+-permeable channel located on the membrane of cell surface, primary cilia, and endoplasmic reticulum (ER). Ca2+ is closely associated with diverse cellular functions. While ER Ca2+ homeostasis depends on different Ca2+ receptors, channels and transporters, the role of PKD2 within the ER remains controversial. Whether and how PKD2-mediated ER Ca2+ leak relates to ADPKD pathogenesis is not well understood. Here, we reviewed current knowledge about the biophysical and physiological properties of PKD2 and how PKD2 contributes to ER Ca2+ homeostasis.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Mutations of the human polycystic kidney disease 2 (PKD2) gene
    Deltas, CC
    HUMAN MUTATION, 2001, 18 (01) : 13 - 24
  • [22] Manipulating thyroid status alters endoplasmic reticulum calcium homeostasis in rat cerebellum
    Cole, J. T.
    McMullen, D. C.
    Kean, W. S.
    Yarnell, A. M.
    Lucky, J. J.
    Selak, M. A.
    Buonora, T. E.
    Grunberg, N. E.
    Verma, A.
    Watson, W. D.
    INDIAN JOURNAL OF EXPERIMENTAL BIOLOGY, 2012, 50 (01) : 7 - 18
  • [23] Regulation of PKD2 channel function by TACAN
    Liu, Xiong
    Zhang, Rui
    Fatehi, Mohammad
    Wang, Yifang
    Long, Wentong
    Tian, Rui
    Deng, Xiaoling
    Weng, Ziyi
    Xu, Qinyi
    Light, Peter E.
    Tang, Jingfeng
    Chen, Xing-Zhen
    JOURNAL OF PHYSIOLOGY-LONDON, 2023, 601 (01): : 83 - 98
  • [24] Loss of PKD1 and PKD2 share common effects on intracellular Ca2+ signaling
    Cabrita, Ines
    Talbi, Khaoula
    Kunzelmann, Karl
    Schreiber, Rainer
    CELL CALCIUM, 2021, 97
  • [25] Novel roles of Pkd2 in male reproductive system development
    Nie, Xuguang
    Arend, Lois J.
    DIFFERENTIATION, 2014, 87 (3-4) : 161 - 171
  • [26] Role of sulforaphane in endoplasmic reticulum homeostasis through regulation of the antioxidant response
    Dana, Arana-Hidalgo
    Alejandro, Silva-Palacios
    LIFE SCIENCES, 2022, 299
  • [27] Pkd1 and Pkd2 Are Required for Normal Placental Development
    Garcia-Gonzalez, Miguel A.
    Outeda, Patricia
    Zhou, Qin
    Zhou, Fang
    Menezes, Luis F.
    Qian, Feng
    Huso, David L.
    Germino, Gregory G.
    Piontek, Klaus B.
    Watnick, Terry
    PLOS ONE, 2010, 5 (09): : 1 - 12
  • [28] The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes
    Garrity, Abigail G.
    Wang, Wuyang
    Collier, Crystal M. D.
    Levey, Sara A.
    Gao, Qiong
    Xu, Haoxing
    ELIFE, 2016, 5
  • [29] Endoplasmic reticulum stress and glucose homeostasis
    Wagner, Martin
    Moore, David D.
    CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2011, 14 (04) : 367 - 373
  • [30] The Complexity of Decisions in Genetics: Annotation of Three Novel Variants in the PKD1 and PKD2 Genes
    Barata, Rui
    Rocha, Liliana
    Tavares, Isabel
    Pereira, Odete
    Carvalho, Filipa
    Oliveira, Joao Paulo
    NEPHRON, 2024, 148 (07) : 487 - 491