Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy

被引:44
作者
Konopelchenko, BG [1 ]
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
关键词
integrable deformation; Weierstrass representation;
D O I
10.1023/A:1006608908156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized Weierstrass representations for generic surfaces conformally immersed into four-dimensional Euclidean and pseudo-Euclidean spaces of different signatures are presented. Integrable deformations of surfaces in these spaces generated by the Davey-Stewartson hierarchy of integrable equations are proposed. The Willmore functional of a surface is invariant under such deformations.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 39 条
[1]  
Ablowitz M A., 1991, Solitons, nonlinear evolution equations and inverse scattering, DOI [10.1017/CBO9780511623998, DOI 10.1017/CBO9780511623998]
[2]  
[Anonymous], 1996, FLUCTUATING GEOMETRI
[3]  
BAIRD P, 1995, DGGA9512010
[4]   KLEINIAN GEOMETRY AND THE N=2 SUPERSTRING [J].
BARRETT, J ;
GIBBONS, GW ;
PERRY, MJ ;
POPE, CN ;
RUBACK, P .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (09) :1457-1493
[5]  
BIANCHI L, 1902, LEZIONI GEOMETRIA DI
[6]  
BOBENKO AI, 1994, HARMONIC MAPS INTEGR, P83
[7]  
BRYANT RL, 1982, J DIFFER GEOM, V17, P455
[8]   Generalized Weierstrass-Enneper inducing, conformal immersions, and gravity [J].
Carroll, R ;
Konopelchenko, B .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (07) :1183-1216
[9]  
CHERN SS, 1985, DIFFERENTIAL GEOMETR
[10]  
DARBOUX G, 1877, LECONS THEORIE SURFA, V1