Weierstrass representations for surfaces in 4D spaces and their integrable deformations via DS hierarchy

被引:44
作者
Konopelchenko, BG [1 ]
机构
[1] Univ Lecce, Dipartimento Fis, I-73100 Lecce, Italy
关键词
integrable deformation; Weierstrass representation;
D O I
10.1023/A:1006608908156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Generalized Weierstrass representations for generic surfaces conformally immersed into four-dimensional Euclidean and pseudo-Euclidean spaces of different signatures are presented. Integrable deformations of surfaces in these spaces generated by the Davey-Stewartson hierarchy of integrable equations are proposed. The Willmore functional of a surface is invariant under such deformations.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 39 条
  • [1] Ablowitz M A., 1991, Solitons, nonlinear evolution equations and inverse scattering, DOI [10.1017/CBO9780511623998, DOI 10.1017/CBO9780511623998]
  • [2] [Anonymous], 1996, FLUCTUATING GEOMETRI
  • [3] BAIRD P, 1995, DGGA9512010
  • [4] KLEINIAN GEOMETRY AND THE N=2 SUPERSTRING
    BARRETT, J
    GIBBONS, GW
    PERRY, MJ
    POPE, CN
    RUBACK, P
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (09): : 1457 - 1493
  • [5] BIANCHI L, 1902, LEZIONI GEOMETRIA DI
  • [6] BOBENKO AI, 1994, HARMONIC MAPS INTEGR, P83
  • [7] BRYANT RL, 1982, J DIFFER GEOM, V17, P455
  • [8] Generalized Weierstrass-Enneper inducing, conformal immersions, and gravity
    Carroll, R
    Konopelchenko, B
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1996, 11 (07): : 1183 - 1216
  • [9] CHERN SS, 1985, DIFFERENTIAL GEOMETR
  • [10] DARBOUX G, 1877, LECONS THEORIE SURFA, V1