pH-Dependence in facet-selective photo-deposition of metals and metal oxides on semiconductor particles

被引:33
作者
Guo, Yuxi [1 ,3 ]
Siretanu, Igor [2 ]
Zhang, Yihe [1 ]
Mei, Bastian [3 ]
Li, Xiaowei [1 ]
Mugele, Frieder [2 ]
Huang, Hongwei [1 ]
Mul, Guido [3 ]
机构
[1] China Univ Geosci, Sch Mat Sci & Technol, Beijing Key Lab Mat Utilizat Nonmetall Minerals &, Natl Lab Mineral Mat, Beijing 100083, Peoples R China
[2] Univ Twente, MESA Inst, Fac Sci & Technol, Phys Complex Fluids Grp, POB 217, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, Photocatalyt Synth Grp, POB 217, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
ATOMIC-FORCE MICROSCOPY; BIOX X; PHOTOCATALYTIC ACTIVITY; SURFACE-DEFECTS; ENVIRONMENTAL APPLICATIONS; ORIENTATION DEPENDENCE; CHARGE SEPARATION; EXPOSED; 001; WATER; TIO2;
D O I
10.1039/c8ta00781k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Facet-engineering and the deposition of co-catalysts lead to significant improvement in efficiency of semiconductors in photocatalytic applications. Here, we demonstrate, using the specific example of bismuth-oxy-bromide (BiOBr) particles, that facet-selective, photo-induced reductive or oxidative deposition of co-catalysts onto plate-like semiconductor particles is strongly pH-dependent. High resolution atomic force microscopy and spectroscopy measurements demonstrate that the effect of pH is caused by a reversal of the surface charge of the [001] facets upon increasing pH from 3 to 9 (isoelectric point approximate to 5), while the side facets become increasingly negatively-charged. We discuss the effect of facet-surface-charge on particle distributions by band-bending, favoring either electron transfer and metal deposition, or hole transfer and metal-oxide deposition. This finding opens up new ways to design highly effective, photocatalytic composite architectures, containing spatially separated catalytic particles of multiple compositions.
引用
收藏
页码:7500 / 7508
页数:9
相关论文
共 71 条
[1]   Electronic phase separation at the LaAlO3/SrTiO3 interface [J].
Ariando ;
Wang, X. ;
Baskaran, G. ;
Liu, Z. Q. ;
Huijben, J. ;
Yi, J. B. ;
Annadi, A. ;
Barman, A. Roy ;
Rusydi, A. ;
Dhar, S. ;
Feng, Y. P. ;
Ding, J. ;
Hilgenkamp, H. ;
Venkatesan, T. .
NATURE COMMUNICATIONS, 2011, 2
[2]   Fundamental aspects of surface engineering of transition metal oxide photocatalysts [J].
Batzill, Matthias .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3275-3286
[3]   (Photo) electrochemical Methods for the Determination of the Band Edge Positions of TiO2-Based Nanomaterials [J].
Beranek, Radim .
ADVANCES IN PHYSICAL CHEMISTRY, 2011,
[4]   Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity [J].
Bhachu, Davinder S. ;
Moniz, Savio J. A. ;
Sathasivam, Sanjayan ;
Scanlon, David O. ;
Walsh, Aron ;
Bawaked, Salem M. ;
Mokhtar, Mohamed ;
Obaid, Abdullah Y. ;
Parkin, Ivan P. ;
Tang, Junwang ;
Carmalt, Claire J. .
CHEMICAL SCIENCE, 2016, 7 (08) :4832-4841
[5]   Photocatalytic degradation for environmental applications - a review [J].
Bhatkhande, DS ;
Pangarkar, VG ;
Beenackers, AACM .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2002, 77 (01) :102-116
[6]   Orientation dependence of the isoelectric point of TiO2 (rutile) surfaces [J].
Bullard, Joseph W. ;
Cima, Michael J. .
LANGMUIR, 2006, 22 (24) :10264-10271
[7]   Cocatalyst Designing: A Regenerable Molybdenum-Containing Ternary Cocatalyst System for Efficient Photocatalytic Water Splitting [J].
Busser, G. Wilma ;
Mei, Bastian ;
Weide, Philipp ;
Vesborg, Peter C. K. ;
Stuehrenberg, Kai ;
Bauer, Matthias ;
Huang, Xing ;
Willinger, Marc-Georg ;
Chorkendorff, Ib ;
Schloegl, Robert ;
Muhler, Martin .
ACS CATALYSIS, 2015, 5 (09) :5530-5539
[8]   XPS study of supported gold catalysts:: the role of Au0 and Au+δ species as active sites [J].
Casaletto, MP ;
Longo, A ;
Martorana, A ;
Prestianni, A ;
Venezia, AM .
SURFACE AND INTERFACE ANALYSIS, 2006, 38 (04) :215-218
[9]   Engineering a high energy surface of anatase TiO2 crystals towards enhanced performance for energy conversion and environmental applications [J].
Chen, Wei ;
Kuang, Qin ;
Wang, Qiuxiang ;
Xie, Zhaoxiong .
RSC ADVANCES, 2015, 5 (26) :20396-20409
[10]   Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications [J].
Cheng, Hefeng ;
Huang, Baibiao ;
Dai, Ying .
NANOSCALE, 2014, 6 (04) :2009-2026