ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC DIFFUSION AND EULER SCHEME EXPERIMENTS

被引:7
作者
Genon-Catalot, Valentine [1 ]
Laredo, Catherine [2 ,3 ,4 ]
机构
[1] Univ Paris 05, CNRS UMR 8145, MAP5, PRES Sorbonne Paris Cite, F-75006 Paris, France
[2] INRA, CNRS UMR 7599, MIA, F-78350 Jouy En Josas, France
[3] INRA, CNRS UMR 7599, LPMA, F-78350 Jouy En Josas, France
[4] Univ Paris 05, INRA, F-78350 Jouy En Josas, France
关键词
Diffusion process; discrete observations; Euler scheme; nonparametric experiments; deficiency distance; Le Cam equivalence; STATISTICAL EQUIVALENCE; DENSITY-ESTIMATION; WHITE-NOISE; REGRESSION; NONEQUIVALENCE; APPROXIMATION; VOLATILITY; MODELS; GARCH;
D O I
10.1214/14-AOS1216
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a global asymptotic equivalence of experiments in the sense of Le Cam's theory. The experiments are a continuously observed diffusion with nonparametric drift and its Euler scheme. We focus on diffusions with nonconstant-known diffusion coefficient. The asymptotic equivalence is proved by constructing explicit equivalence mappings based on random time changes. The equivalence of the discretized observation of the diffusion and the corresponding Euler scheme experiment is then derived. The impact of these equivalence results is that it justifies the use of the Euler scheme instead of the discretized diffusion process for inference purposes.
引用
收藏
页码:1145 / 1165
页数:21
相关论文
共 50 条
[41]   The asymptotic minimax constant for sup-norm loss in nonparametric density estimation [J].
Korostelev, A ;
Nussbaum, M .
BERNOULLI, 1999, 5 (06) :1099-1118
[42]   Some problems of nonparametric estimation by observations of ergodic diffusion process [J].
Kutoyants, YA .
STATISTICS & PROBABILITY LETTERS, 1997, 32 (03) :311-320
[43]   Euler scheme for a stochastic Goursat problem [J].
Huang, YK ;
Tsai, CY .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (02) :275-287
[44]   Non-asymptotic error bounds for the multilevel Monte Carlo Euler method applied to SDEs with constant diffusion coefficient [J].
Jourdain, Benjamin ;
Kebaier, Ahmed .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
[45]   A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand [J].
Huh, Woonghee Tim ;
Rusmevichientong, Paat .
MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (01) :103-123
[46]   Asymptotic Relative Efficiency of Parametric and Nonparametric Survival Estimators [J].
Nemes, Szilard .
STATS, 2023, 6 (04) :1147-1159
[47]   Asymptotic Normality of Nonparametric Kernel Regression Estimation for Missing at Random Functional Spatial Data [J].
Alshahrani, Fatimah ;
Almanjahie, Ibrahim M. ;
Benchikh, Tawfik ;
Fetitah, Omar ;
Attouch, Mohammed Kadi .
JOURNAL OF MATHEMATICS, 2023, 2023
[48]   Nonparametric state estimation of diffusion processes [J].
Shoji, I .
BIOMETRIKA, 2002, 89 (02) :451-456
[49]   The rate of convergence of the Euler scheme to the solution of stochastic differential equations with nonhomogeneous coefficients and non-Lipschitz diffusion [J].
Mishura, Yuliya S. ;
Posashkova, Svitlana V. .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2011, 19 (01) :63-89
[50]   Nonparametric Estimation of the Short Rate Diffusion Process from a Panel of Yields [J].
Sam, Abdoul G. ;
Jiang, George J. .
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS, 2009, 44 (05) :1197-1230