ASYMPTOTIC EQUIVALENCE OF NONPARAMETRIC DIFFUSION AND EULER SCHEME EXPERIMENTS

被引:7
作者
Genon-Catalot, Valentine [1 ]
Laredo, Catherine [2 ,3 ,4 ]
机构
[1] Univ Paris 05, CNRS UMR 8145, MAP5, PRES Sorbonne Paris Cite, F-75006 Paris, France
[2] INRA, CNRS UMR 7599, MIA, F-78350 Jouy En Josas, France
[3] INRA, CNRS UMR 7599, LPMA, F-78350 Jouy En Josas, France
[4] Univ Paris 05, INRA, F-78350 Jouy En Josas, France
关键词
Diffusion process; discrete observations; Euler scheme; nonparametric experiments; deficiency distance; Le Cam equivalence; STATISTICAL EQUIVALENCE; DENSITY-ESTIMATION; WHITE-NOISE; REGRESSION; NONEQUIVALENCE; APPROXIMATION; VOLATILITY; MODELS; GARCH;
D O I
10.1214/14-AOS1216
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a global asymptotic equivalence of experiments in the sense of Le Cam's theory. The experiments are a continuously observed diffusion with nonparametric drift and its Euler scheme. We focus on diffusions with nonconstant-known diffusion coefficient. The asymptotic equivalence is proved by constructing explicit equivalence mappings based on random time changes. The equivalence of the discretized observation of the diffusion and the corresponding Euler scheme experiment is then derived. The impact of these equivalence results is that it justifies the use of the Euler scheme instead of the discretized diffusion process for inference purposes.
引用
收藏
页码:1145 / 1165
页数:21
相关论文
共 50 条