High-speed force mapping on living cells with a small cantilever atomic force microscope

被引:34
作者
Braunsmann, Christoph [1 ]
Seifert, Jan [1 ]
Rheinlaender, Johannes [1 ]
Schaeffer, Tilman E. [1 ]
机构
[1] Univ Tubingen, Inst Appl Phys & LISA, D-72076 Tubingen, Germany
关键词
ION CONDUCTANCE; VISCOUS DRAG; CYTOSKELETON; ELASTICITY; MECHANICS; MICRORHEOLOGY; CALIBRATION; HEIGHT; BLEBS; AFM;
D O I
10.1063/1.4885464
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by approximate to 10-100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Friction coefficient mapping using the atomic force microscope
    Breakspear, S
    Smith, JR
    Nevell, TG
    Tsibouklis, J
    SURFACE AND INTERFACE ANALYSIS, 2004, 36 (09) : 1330 - 1334
  • [42] Structural dynamics of channels and transporters by high-speed atomic force microscopy
    Heath, George R.
    Lin, Yi-Chih
    Matin, Tina R.
    Scheuring, Simon
    ION CHANNELS: CHANNEL BIOCHEMISTRY, RECONSTITUTION, AND FUNCTION, 2021, 652 : 127 - 159
  • [43] High-speed atomic force microscopy for observing dynamic biomolecular processes
    Ando, Toshio
    Uchihashi, Takayuki
    Kodera, Noriyuki
    Yamamoto, Daisuke
    Taniguchi, Masaaki
    Miyagi, Atsushi
    Yamashita, Hayato
    JOURNAL OF MOLECULAR RECOGNITION, 2007, 20 (06) : 448 - 458
  • [44] High-speed atomic force microscopy: Structure and dynamics of single proteins
    Casuso, Ignacio
    Rico, Felix
    Scheuring, Simon
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2011, 15 (05) : 704 - 709
  • [45] A serial-kinematic nanopositioner for high-speed atomic force microscopy
    Wadikhaye, Sachin P.
    Yong, Yuen Kuan
    Moheimani, S. O. Reza
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (10)
  • [46] DEVELOPMENT OF A HIGH-SPEED LASER-FREE ATOMIC FORCE MICROSCOPY
    Bashash, Saeid
    Saeidpourazar, Reza
    Jalili, Nader
    PROCEEDINGS OF THE ASME DYNAMIC SYSTEMS AND CONTROL CONFERENCE 2009, PTS A AND B, 2010, : 789 - 794
  • [47] Lyapunov estimation for high-speed demodulation in multifrequency atomic force microscopy
    Harcombe, David M.
    Ruppert, Michael G.
    Ragazzon, Michael R. P.
    Fleming, Andrew J.
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 : 490 - 498
  • [48] An Integrated Magnetic Actuation System for High-Speed Atomic Force Microscopy
    Sriramshankar, R.
    Jayanth, G. R.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (05) : 2285 - 2294
  • [49] Recent development of high-speed atomic force microscopy in molecular biology
    Xu, Ke
    Huang, Xin
    Pan, Yusheng
    MICRO & NANO LETTERS, 2020, 15 (06) : 354 - 358
  • [50] Atomic force microscopy of living cells
    Ushiki, T
    Yamamoto, S
    Hitomi, J
    Ogura, S
    Umemoto, T
    Shigeno, M
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2000, 39 (6B): : 3761 - 3764