A model for precipitation strengthening in multi-particle systems

被引:89
作者
Ahmadi, M. R. [1 ,2 ,3 ]
Povoden-Karadeniz, E. [1 ]
Oeksuez, K. I. [3 ]
Falahati, A. [3 ]
Kozeschnik, E. [1 ,2 ,3 ]
机构
[1] Vienna Univ Technol, Inst Mat Sci & Technol, Christian Doppler Lab Early Stages Precipitat, A-1040 Vienna, Austria
[2] Univ Leoben, Dept Phys Met & Mat Testing, Christian Doppler Lab Early Stages Precipitat, A-8700 Leoben, Austria
[3] Vienna Univ Technol, Inst Mat Sci & Technol, A-1040 Vienna, Austria
关键词
Precipitation strengthening; Shearing mechanism; Precipitate resistance force; ALUMINUM-LITHIUM-ALLOYS; DISLOCATION MOVEMENT; RANDOM ARRAYS; CRYSTALS; PARTICLES; OBSTACLES; MAGNESIUM; ENERGIES; KINETICS; COHERENT;
D O I
10.1016/j.commatsci.2014.04.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present a consistent model describing the increase of yield strength caused by precipitation of second phase particles. Shearing and non-shearing mechanisms are accounted for, depending on the coherency between precipitates and matrix. The physical key parameters entering the model are critically evaluated on basis of the dislocation line tension, free distance between two particles and precipitate radius. A set of equations is derived, which describes the yield strength increase due to the interaction between dislocations and precipitates. Based on coupling equations for the individual strengthening mechanisms, the model allows for a predictive simulation of the final yield strength caused by precipitation in multi-particle, multi-phase systems. With the aid of contemporary computational power, the enhanced strengthening equations deliver more accurate results compared to the conventional equations. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 186
页数:14
相关论文
共 48 条
[1]   Precipitate strengthening of non-spherical precipitates extended in ⟨100⟩ or {100} direction in fcc crystals [J].
Ahmadi, M. R. ;
Sonderegger, B. ;
Povoden-Karadeniz, E. ;
Falahati, A. ;
Kozeschnik, E. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 590 :262-266
[2]   PRECIPITATION HARDENING [J].
ARDELL, AJ .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12) :2131-2165
[3]   ANTIPHASE BOUNDARY ENERGIES AND THE TRANSITION FROM SHEARING TO LOOPING IN ALLOYS STRENGTHENED BY ORDERED PRECIPITATES [J].
ARDELL, AJ ;
HUANG, JC .
PHILOSOPHICAL MAGAZINE LETTERS, 1988, 58 (04) :189-197
[4]  
Ashby M F, 1968, MET SOC C, V47, P143
[5]  
Cahn J.W., 1983, ALLOY PHASE DIAGR, V4, P349
[6]   Dislocation core field. II. Screw dislocation in iron [J].
Clouet, Emmanuel ;
Ventelon, Lisa ;
Willaime, F. .
PHYSICAL REVIEW B, 2011, 84 (22)
[7]   Dislocation core field. I. Modeling in anisotropic linear elasticity theory [J].
Clouet, Emmanuel .
PHYSICAL REVIEW B, 2011, 84 (22)
[8]   THEORY OF DISLOCATIONS [J].
COTTRELL, AH .
PROGRESS IN METAL PHYSICS, 1953, 4 :205-264
[9]   Precipitation kinetics and strengthening of a Fe-0.8wt%Cu alloy [J].
Deschamps, A ;
Militzer, M ;
Poole, WJ .
ISIJ INTERNATIONAL, 2001, 41 (02) :196-205
[10]  
Dieter G.E., 1986, MECH METALLURGY