On characterizations of classical polynomials

被引:47
作者
Alvarez-Nodarse, R.
机构
[1] Univ Seville, Fac Matemat, Dept Anal Matemat, E-41080 Seville, Spain
[2] Univ Granada, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
关键词
classical polynomials; q-Hahn tableau; discrete polynomials; characterization theorems;
D O I
10.1016/j.cam.2005.06.046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the classical families of Jacobi, Laguerre, Hermite, and Bessel polynomials are characterized as eigenvectors of a second order linear differential operator with polynomial coefficients, Rodrigues formula, etc. In this paper we present a unified study of the classical discrete polynomials and q-polynomials of the q-Hahn tableau by using the difference calculus on linear-type lattices. We obtain in a straightforward way several characterization theorems for the classical discrete and q-polynomials of the "q-Hahn tableau". Finally, a detailed discussion of a characterization by Marcellan et al. is presented. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:320 / 337
页数:18
相关论文
共 28 条
[1]  
Al- Salam W. A., 1972, SIAM J MATH ANAL, V3, P65
[2]  
ALSALAM WA, 1990, NATO ADV SCI I C-MAT, V294, P1
[3]   q-Classical polynomials and the q-Askey and Nikiforov-Uvarov tableaus [J].
Alvarez-Nodarse, R ;
Medem, JC .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 135 (02) :197-223
[4]   On the q-polynomials in the exponential lattice x(s) = c1qs+c3 [J].
Alvarez-Nodarse, R ;
Arvesú, J .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1999, 8 (3-4) :299-324
[5]  
Alvarez-Nodarse R., 2003, MONOGRAFIAS SEMINARI, V26
[6]   ON CLASSICAL ORTHOGONAL POLYNOMIALS [J].
ATAKISHIYEV, NM ;
RAHMAN, M ;
SUSLOV, SK .
CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) :181-226
[7]   On the `Favard theorem' and its extensions [J].
Marcellán, Francisco ;
Álvarez-Nodarse, Renato .
Journal of Computational and Applied Mathematics, 2001, 127 (1-2) :231-254
[8]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[9]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[10]  
CRYER CW, 1970, B UNIONE MAT ITAL, V25, P1