Cohomological patterns of coherent sheaves over projective schemes

被引:53
作者
Brodmann, M
Hellus, M
机构
[1] Univ Zurich, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Leipzig, Fak Math & Informat, D-04009 Leipzig, Germany
关键词
D O I
10.1016/S0022-4049(01)00144-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the sets P(X, F) = {(i. n) is an element of N-0 x Z \ H-i (X, F(n)) not equal 0}, where X is a projective scheme over a noetherian ring R-0 and where F is a coherent sheaf of C-x-modules. In particular we show that P(X, F) is a so called tame combinatorial pattern if the base ring R-0 is semilocal and of dimension less than or equal to 1. If X = P-R0(d). is a projective space over such a base ring R-0, the possible sets P(X, F) are shown to be precisely all tame combinatorial patterns of width less than or equal to d. We also discuss the "tameness problem" for arbitrary noetherian base rings R-0 and prove some stability results for the R-0-associated primes of the R-0-modules H-i(X, F(n)). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:165 / 182
页数:18
相关论文
共 13 条
[1]  
BRODMANN M, 2000, VIETNAM J MATH, V28, P345
[2]  
Brodmann M., 1998, CAMBRIDGE STUDIES AD, V60
[3]   A finiteness result for associated primes of local cohomology modules [J].
Brodmann, MP ;
Faghani, AL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :2851-2853
[4]  
Eisenbud D., 1996, COMMUTATIVE ALGEBRA
[5]  
EVANS G, 1985, LMS LECTURE NOTES, V106
[6]  
FUMASOLI S, 1999, THESIS U ZURICH
[7]   On the set of associated primes of a local cohomology module [J].
Hellus, M .
JOURNAL OF ALGEBRA, 2001, 237 (01) :406-419
[8]  
HUNEKE C, 1992, RES NOT MAT, V2, P93
[9]  
Mumford David, 1966, ANN MATH STUDIES, V59
[10]  
Singh AK, 2000, MATH RES LETT, V7, P165