Mechanistic aspects of the radiation-chemical reduction of graphene oxide to graphene-like materials

被引:15
作者
Flyunt, Roman [1 ]
Knolle, Wolfgang [1 ]
Kahnt, Axel [2 ,3 ]
Prager, Andrea [1 ]
Lotnyk, Andriy [1 ]
Malig, Jenny [2 ,3 ]
Guldi, Dirk [2 ,3 ]
Abel, Bernd [1 ]
机构
[1] Leibniz Inst Oberflachenmodifizierung IOM, D-04303 Leipzig, Germany
[2] Dept Chem & Pharm, Erlangen, Germany
[3] ICMM, Erlangen, Germany
关键词
Graphene oxide; reduced graphene oxide; electron beam; reducing free radicals; FUNCTIONALIZED GRAPHENE; AQUEOUS SUSPENSION; EFFICIENT ROUTE; CARBON; NANOCOMPOSITES; NANOSHEETS; RADICALS; PLATFORM;
D O I
10.3109/09553002.2014.907934
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Purpose: The aim of the work was to investigate mechanistic details of the preparation of graphene-like materials (GLM) via reduction of graphene oxide (GO) in aqueous dispersions by electron beam (EB) generated reducing free radicals. Materials and methods: A 10 MeV linear accelerator was employed to irradiate aqueous GO dispersions at ambient temperatures. The kinetics of GO reduction was followed using UV-Vis spectroscopy. The resulting GLM were characterized by X-ray photoelectron spectroscopy (XPS), Transmission electron microscopy (TEM), Raman spectroscopy and conductivity measurements. Results: The reduction of GO could be afforded with high efficiency within minutes at room temperature via the reaction of GO with reducing radicals generated by EB irradiation. The detailed investigation of the reduction mechanism allowed a selection of the best reducing free radicals in terms of both their efficiency and environmental impact of their precursors and final products. Conclusions: The EB-treatment of aqueous GO dispersions is a highly efficient, environmentally friendly, cost-effective and easily up-scalable method for the preparation of GLM. The efficiency of the new reduction approach is comparable with the best existing methods.
引用
收藏
页码:486 / 494
页数:9
相关论文
共 57 条
[1]   DECOMPOSITION OF WATER AND AQUEOUS SOLUTIONS UNDER MIXED FAST NEUTRON AND GAMMA-RADIATION [J].
ALLEN, AO ;
HOCHANDEL, CJ ;
GHORMLEY, JA ;
DAVIS, TW .
JOURNAL OF PHYSICAL CHEMISTRY, 1952, 56 (05) :575-586
[2]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[3]   PULSE RADIOLYTIC STUDY OF SITE OF OH RADICAL ATTACK ON ALIPHATIC ALCOHOLS IN AQUEOUS-SOLUTION [J].
ASMUS, KD ;
MOCKEL, H ;
HENGLEIN, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1973, 77 (10) :1218-1221
[4]   CRITICAL-REVIEW OF RATE CONSTANTS FOR REACTIONS OF HYDRATED ELECTRONS, HYDROGEN-ATOMS AND HYDROXYL RADICALS (.OH/.O-) IN AQUEOUS-SOLUTION [J].
BUXTON, GV ;
GREENSTOCK, CL ;
HELMAN, WP ;
ROSS, AB .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 1988, 17 (02) :513-886
[5]   Mechanically strong, electrically conductive, and biocompatible graphene paper [J].
Chen, Haiqun ;
Mueller, Marc B. ;
Gilmore, Kerry J. ;
Wallace, Gordon G. ;
Li, Dan .
ADVANCED MATERIALS, 2008, 20 (18) :3557-+
[6]   Reduction and disorder in graphene oxide induced by electron-beam irradiation [J].
Chen, Lei ;
Xu, Zhiwei ;
Li, Jialu ;
Min, Chunying ;
Liu, Liangsen ;
Song, Xiaoyan ;
Chen, Guangwei ;
Meng, Xianfu .
MATERIALS LETTERS, 2011, 65 (08) :1229-1230
[7]   Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials [J].
Compton, Owen C. ;
Nguyen, SonBinh T. .
SMALL, 2010, 6 (06) :711-723
[8]   Preparation and characterization of graphene oxide paper [J].
Dikin, Dmitriy A. ;
Stankovich, Sasha ;
Zimney, Eric J. ;
Piner, Richard D. ;
Dommett, Geoffrey H. B. ;
Evmenenko, Guennadi ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2007, 448 (7152) :457-460
[9]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[10]   An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder [J].
Fan, Zhuangjun ;
Wang, Kai ;
Wei, Tong ;
Yan, Jun ;
Song, Liping ;
Shao, Bo .
CARBON, 2010, 48 (05) :1686-1689