Test-data generation for control coverage by proof

被引:1
|
作者
Cavalcanti, Ana [1 ]
King, Steve [1 ]
O'Halloran, Colin [2 ]
Woodcock, Jim [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5DD, N Yorkshire, England
[2] Univ Oxford, Dept Comp Sci, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Control coverage; Semantics; UTP; Invariants; FAULT CLASSES;
D O I
10.1007/s00165-013-0279-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Many tools can check if a test set provides control coverage; they are, however, of little or no help when coverage is not achieved and the test set needs to be completed. In this paper, we describe how a formal characterisation of a coverage criterion can be used to generate test data; we present a procedure based on traditional programming techniques like normalisation, and weakest precondition calculation. It is a basis for automation using an algebraic theorem prover. In the worst situation, if automation fails to produce a specific test, we are left with a specification of the compliant test sets. Many approaches to model-based testing rely on formal models of a system under test. Our work, on the other hand, is not concerned with the use of abstract models for testing, but with coverage based on the text of programs.
引用
收藏
页码:795 / 823
页数:29
相关论文
共 50 条
  • [21] Open Data Consumption Through the Generation of Disposable Web APIs
    Garcia De Marina, Paloma Caceres
    Cavero Barca, Jose Maria
    Cuesta, Carlos E.
    Angel Garrido, Miguel
    Garrigos, Irene
    Gonzalez-Mora, Cesar
    Mazon, Jose-Norberto
    Sierra-Alonso, Almudena
    Vela, Belen
    Jacobo Zubcoff, Jose
    IEEE ACCESS, 2021, 9 : 76354 - 76363
  • [22] ADAPTIVE DISORDER CONTROL IN DATA STREAM PROCESSING
    Kim, Hyeon Gyu
    Kim, Cheolgi
    Kim, Myoung Ho
    COMPUTING AND INFORMATICS, 2012, 31 (02) : 393 - 410
  • [23] Big Data for weed control and crop protection
    van Evert, F. K.
    Fountas, S.
    Jakovetic, D.
    Crnojevic, V.
    Travlos, I.
    Kempenaar, C.
    WEED RESEARCH, 2017, 57 (04) : 218 - 233
  • [24] A Study on an Intelligent Algorithm for Automatic Test Paper Generation and Scoring in University English Exams
    Yang H.
    Journal of ICT Standardization, 2023, 11 (04): : 391 - 402
  • [25] Logical Method for Reasoning About Access Control and Data Flow Control Models
    Logrippo, Luigi
    FOUNDATIONS AND PRACTICE OF SECURITY (FPS 2014), 2015, 8930 : 205 - 220
  • [26] Knowledge Graph Generation and Enabling Multidimensional Analytics on Bangladesh Agricultural Data
    Nath, Rudra Pratap Deb
    Das, Tithi Rani
    Das, Tonmoy Chandro
    Raihan, S. M. Shafkat
    IEEE ACCESS, 2024, 12 : 87512 - 87531
  • [27] An Automated Metadata Generation Method for Data Lake of Industrial WoT Applications
    Yu, Han
    Cai, Hongming
    Liu, Zhiyuan
    Xu, Boyi
    Jiang, Lihong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (08): : 5235 - 5248
  • [28] Normative data for the Pyramids and Palm Trees Test in literate Persian adults
    Mehri, Azar
    Mousavi, Seyede Zohreh
    Kamali, Mohammad
    Maroufizadeh, Saman
    IRANIAN JOURNAL OF NEUROLOGY, 2018, 17 (01) : 18 - 23
  • [29] Automatic geospatial metadata generation for earth science virtual data products
    Yue, Peng
    Gong, Jianya
    Di, Liping
    He, Lianlian
    GEOINFORMATICA, 2012, 16 (01) : 1 - 29
  • [30] Teaching Digital Control of Substation and IEC 61850 With a Test Bench Validation
    Labonne, Antoine
    Caire, Raphael
    Braconnier, Thierry
    Guise, Laurent
    Jardim, Mario
    Hadjsaid, Nouredine
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (02) : 1175 - 1182