The stochastic obstacle problem for the harmonic oscillator with damping

被引:11
作者
Barbu, Viorel
Da Prato, Giuseppe [1 ]
机构
[1] Alexandru Ioan Cuza Univ, Iasi 700506, Romania
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
stochastic variational inequality; Kolmogorov equation; invariant measure; m-dissipative operator;
D O I
10.1016/j.jfa.2005.11.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Kolmogorov equation associated with a second order stochastic variational inequality related to the harmonic oscillator. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 448
页数:19
相关论文
共 12 条
[1]  
[Anonymous], DIRICHLET FORMS SYMM
[2]  
BOGACHEV VI, 2001, COMM PARTIAL DIFFERE, V26
[3]  
Crawford F. S., 1968, BERKELEY PHYS COURSE, V3
[4]  
Da Prato G., 2004, Kolmogorov Equations for Stochastic PDEs, DOI 10.1007/978-3-0348-7909-5
[5]  
Da Prato G., 1996, Ergodicity for infinite dimensional systems
[6]  
DAPRATO G, IN PRESS DCDS
[7]   Gradient estimates for Dirichlet parabolic problems in unbounded domains [J].
Fornaro, S ;
Metafune, G ;
Priola, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 205 (02) :329-353
[8]   Some remarks on the Smoluchowski-Kramers approximation [J].
Freidlin, M .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) :617-634
[9]  
Ma Z. M., 1992, INTRO THEORY NONSYMM
[10]   WHITE-NOISE DRIVEN QUASI-LINEAR SPDES WITH REFLECTION [J].
NUALART, D ;
PARDOUX, E .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (01) :77-89