Hepatic glucose sensing and integrative pathways in the liver

被引:84
作者
Oosterveer, Maaike H. [1 ]
Schoonjans, Kristina [2 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Pediat & Lab Med, NL-9713 GZ Groningen, Netherlands
[2] Ecole Polytech Fed Lausanne, Sch Life Sci, Inst Bioengn, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
Acetylation; ChREBP; Glucokinase; Glucose sensing; Hepatocytes; LRH-1; O-linked beta-N-acetylglucosaminylation; GLYCOGEN-STORAGE-DISEASE; CARBOHYDRATE-RESPONSE-ELEMENT; GLUCOKINASE GENE-EXPRESSION; BINDING PROTEIN CHREBP; O-GLCNAC TRANSFERASE; DE-NOVO LIPOGENESIS; ACTIVATED RECEPTOR-GAMMA; ORPHAN NUCLEAR RECEPTOR; CENTER-DOT-MLX; X-RECEPTOR;
D O I
10.1007/s00018-013-1505-z
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hepatic glucose-sensing system is a functional network of enzymes and transcription factors that is critical for the maintenance of energy homeostasis and systemic glycemia. Here we review the recent literature on its components and metabolic actions. Glucokinase (GCK) is generally considered as the initial postprandial glucose-sensing component, which acts as the gatekeeper for hepatic glucose metabolism and provides metabolites that activate the transcription factor carbohydrate response element binding protein (ChREBP). Recently, liver receptor homolog 1 (LRH-1) has emerged as an upstream regulator of the central GCK-ChREBP axis, with a critical role in the integration of hepatic intermediary metabolism in response to glucose. Evidence is also accumulating that O-linked beta-N-acetylglucosaminylation (O-GlcNAcylation) and acetylation can act as glucose-sensitive modifications that may contribute to hepatic glucose sensing by targeting regulatory proteins and the epigenome. Further elucidation of the components and functional roles of the hepatic glucose-sensing system may contribute to the future treatment of liver diseases associated with deregulated glucose sensors.
引用
收藏
页码:1453 / 1467
页数:15
相关论文
共 207 条
[1]   Glucose 6-phosphate causes translocation of phosphorylase in hepatocytes and inactivates the enzyme synergistically with glucose [J].
Aiston, S ;
Green, A ;
Mukhtar, M ;
Agius, L .
BIOCHEMICAL JOURNAL, 2004, 377 :195-204
[2]   New nomenclature for chromatin-modifying enzymes [J].
Allis, C. David ;
Berger, Shelley L. ;
Cote, Jacques ;
Dent, Sharon ;
Jenuwien, Thomas ;
Kouzarides, Tony ;
Pillus, Lorraine ;
Reinberg, Danny ;
Shi, Yang ;
Shiekhattar, Ramin ;
Shilatifard, Ali ;
Workman, Jerry ;
Zhang, Yi .
CELL, 2007, 131 (04) :633-636
[3]   Nuclear Receptor Liver X Receptor Is O-GlcNAc-modified in Response to Glucose [J].
Anthonisen, Elin Holter ;
Berven, Lise ;
Holm, Sverre ;
Nygard, Maria ;
Nebb, Hilde I. ;
Gronning-Wang, Line M. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (03) :1607-1615
[4]   Fructose 2,6-bisphosphate is essential for glucose-regulated gene transcription of glucose-6-phosphatase and other ChREBP target genes in hepatocytes [J].
Arden, Catherine ;
Tudhope, Susan J. ;
Petrie, John L. ;
Al-Oanzi, Ziad H. ;
Cullen, Kirsty S. ;
Lange, Alex J. ;
Towle, Howard C. ;
Agius, Loranne .
BIOCHEMICAL JOURNAL, 2012, 443 :111-123
[5]   Elevated Glucose Represses Liver Glucokinase and Induces Its Regulatory Protein to Safeguard Hepatic Phosphate Homeostasis [J].
Arden, Catherine ;
Petrie, John L. ;
Tudhope, Susan J. ;
Al-Oanzi, Ziad ;
Claydon, Amy J. ;
Beynon, Robert J. ;
Towle, Howard C. ;
Agius, Loranne .
DIABETES, 2011, 60 (12) :3110-3120
[6]   Expression of mRNA for glucose transport proteins in jejunum, liver, kidney and skeletal muscle of pigs [J].
Aschenbach, J. R. ;
Steglich, K. ;
Gaebel, G. ;
Honscha, K. U. .
JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY, 2009, 65 (03) :251-266
[7]   Cytoplasmic sequestration of HDAC7 from mitochondrial and nuclear compartments upon initiation of apoptosis [J].
Bakin, RE ;
Jung, MO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (49) :51218-51225
[8]   Enhanced glucose cycling and suppressed de novo synthesis of glucose-6-phosphate result in a net unchanged hepatic glucose output in ob/ob mice [J].
Bandsma, RHJ ;
Grefhorst, A ;
van Dijk, TH ;
van der Sluijs, FH ;
Hammer, A ;
Reijngoud, DJ ;
Kuipers, F .
DIABETOLOGIA, 2004, 47 (11) :2022-2031
[9]   Acute inhibition of glucose-6-phosphate translocator activity leads to increased de novo lipogenesis and development of hepatic steatosis without affecting VLDL production in rats [J].
Bandsma, RHJ ;
Wiegman, CH ;
Herling, AW ;
Burger, HJ ;
ter Harmsel, A ;
Meijer, AJ ;
Romijn, JA ;
Reijngoud, DJ ;
Kuipers, F .
DIABETES, 2001, 50 (11) :2591-2597
[10]   Increased de novo lipogenesis and delayed conversion of large VLDL into intermediate density lipoprotein particles contribute to Hyperlipidemia in glycogen storage disease type 1 [J].
Bandsma, Robert H. J. ;
Prinsen, Berthil H. ;
Van Der Velden, Monique De Sain ;
Rake, Jan-Peter ;
Boer, Theo ;
Smit, G. Peter A. ;
Reijngoud, Dirk-Jan ;
Kuipers, Folkert .
PEDIATRIC RESEARCH, 2008, 63 (06) :702-707