Cloud thermodynamic phase detection using a directional polarimetric camera (DPC)

被引:16
作者
Shang, Huazhe [1 ,2 ]
Letu, Husi [1 ]
Chen, Liangfu [1 ]
Riedi, Jerome [2 ]
Ma, Run [1 ]
Wei, Lesi [1 ]
Labonnote, Laurent C. [2 ]
Hioki, Souichiro [2 ]
Liu, Chao [3 ]
Wang, Zhongting [4 ]
Wang, Jianjie [5 ]
机构
[1] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Aerosp Informat Res Inst, Beijing 100101, Peoples R China
[2] Univ Lille, CNRS, UMR 8518, LOA Lab Opt Atmospher, F-59000 Lille, France
[3] Nanjing Univ Informat Sci & Technol, Key Lab Aerosol Cloud Precipitat, China Meteorol Adm, Sch Atmospher Phys, Nanjing 210044, Peoples R China
[4] Minist Environm Protect, Satellite Environm Ctr, Beijing 100094, Peoples R China
[5] Ningbo Meteorol Bur, Ningbo 315000, Peoples R China
基金
中国国家自然科学基金;
关键词
DROPLET EFFECTIVE RADIUS; INHOMOGENEOUS HEXAGONAL MONOCRYSTALS; LIGHT-SCATTERING; CIRRUS CLOUDS; LIQUID CLOUDS; POLDER; PRODUCTS; EXAMPLES;
D O I
10.1016/j.jqsrt.2020.107179
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Cloud phase detection via satellites is essential in the accurate estimation of cloud radiative forcing at global and regional scales. The difference in polarized reflectance features between liquid and ice clouds can be used for detecting the cloud phase. The directional polarimetric camera (DPC) onboard the Chinese GaoFen-5 satellite was launched in May 2018. The multidirectional, multispectral, and multipolarization capabilities of the DPC provide essential measurements to better understand the distribution of clouds and their physical properties. Numerous studies have demonstrated that the angular polarization signatures of ice crystals and liquid cloud droplets are effective in the detection of liquid and ice clouds. This study uses cloud phase profiles from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) to select reliable liquid and ice cloud pixels via the DPC and analyzes the angular polarization signatures of ice and cloud clouds. These extracted angular polarization signatures are compared with the simulated results. Then, based on the earlier POLDER cloud phase algorithm, we propose a cloud phase detection method (P-CP) for DPC using multiple tests developed based on the extracted angular polarization signatures. Finally, P-CP algorithm is applied to the measurements of DPC and POLDER on 1 June 2008, and the analysis indicates that our cloud phase detection results agree well with the MODIS and POLDER cloud phase products. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:13
相关论文
共 42 条
[11]   Cloud thermodynamical phase classification from the POLDER spaceborne instrument [J].
Goloub, P ;
Herman, M ;
Chepfer, H ;
Riedi, J ;
Brogniez, G ;
Couvert, P ;
Séze, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D11) :14747-14759
[12]   Quantitative evaluation of seven optical sensors for cloud microphysical measurements at the Puy-de-Dome Observatory, France [J].
Guyot, G. ;
Gourbeyre, C. ;
Febvre, G. ;
Shcherbakov, V. ;
Burnet, F. ;
Dupont, J. -C. ;
Sellegri, K. ;
Jourdan, O. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (10) :4347-4367
[13]   LIGHT-SCATTERING IN PLANETARY ATMOSPHERES [J].
HANSEN, JE ;
TRAVIS, LD .
SPACE SCIENCE REVIEWS, 1974, 16 (04) :527-610
[14]   Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study [J].
Hu, YX ;
Winker, D ;
Yang, P ;
Baum, B ;
Poole, L ;
Vann, L .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 70 (4-6) :569-579
[15]   THE EARTHCARE SATELLITE The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation [J].
Illingworth, A. J. ;
Barker, H. W. ;
Beljaars, A. ;
Ceccaldi, M. ;
Chepfer, H. ;
Clerbaux, N. ;
Cole, J. ;
Delanoe, J. ;
Domenech, C. ;
Donovan, D. P. ;
Fukuda, S. ;
Hirakata, M. ;
Hogan, R. J. ;
Huenerbein, A. ;
Kollias, P. ;
Kubota, T. ;
Nakajima, T. ;
Nakajima, T. Y. ;
Nishizawa, T. ;
Ohno, Y. ;
Okamoto, H. ;
Oki, R. ;
Sato, K. ;
Satoh, M. ;
Shephard, M. W. ;
Velazquez-Blazquez, A. ;
Wandinger, U. ;
Wehr, T. ;
van Zadelhoff, G. -J. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (08) :1311-1332
[16]  
Kahn B.H., 2011, J. Geophys. Res, V116, pD20201
[17]   Modeling total and polarized reflectances of ice clouds: evaluation by means of POLDER and ATSR-2 measurements [J].
Knap, WH ;
Labonnote, LC ;
Brogniez, G ;
Stammes, P .
APPLIED OPTICS, 2005, 44 (19) :4060-4073
[18]   Theoretical study of mixing in liquid clouds - Part 1: Classical concepts [J].
Korolev, Alexei ;
Khain, Alex ;
Pinsky, Mark ;
French, Jeffrey .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (14) :9235-9254
[19]   Modeling of light scattering in cirrus clouds with inhomogeneous hexagonal monocrystals. Comparison with in-situ nd ADEOS-POLDER measurements [J].
Labonnote, LC ;
Brogniez, G ;
Doutriaux-Boucher, M ;
Buriez, JC ;
Gayet, JF ;
Chepfer, H .
GEOPHYSICAL RESEARCH LETTERS, 2000, 27 (01) :113-116
[20]  
Labonnote LC, 2001, J GEOPHYS RES-ATMOS, V106, P12139, DOI 10.1029/2000JD900642